Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16015–16029 | Cite as

Construction of binary BiVO4/g-C3N4 photocatalyst and their photocatalytic performance for reactive blue 19 reduction from aqueous solution coupling with H2O2

  • Yuzhen LiEmail author
  • Xiaojin Wang
  • Lizhen Gao


A highly efficient binary composite consisting of ripple-like sheet g-C3N4 doped with paramecium-shape BiVO4 has been successfully fabricated in a mild method and was further characterized by X-ray diffraction, Transmission electron microscopy, Fourier-transform infrared spectroscopy, UV–Vis diffuse reflectance spectrum, and photoluminescence. Their photocatalytic performances were estimated by monitoring the degradation process of reactive blue 19 (RB19) in the aqueous phase under visible light irradiation. The results showed that when the mass ratio of BiVO4 and g-C3N4 was 1:5, the binary composite presented the best catalytic activities during the photocatalytic degradation of RB19, and the synthesized composite with H2O2 addition could further promote the photocatalytic activities. It is worth mentioning that H2O2 acted only as a electron acceptor for accelerating the separation of electron–hole pairs. The trapping experiments showed that ·O2 was main active species in photocatalytic degradation of RB19. The improving of photocatalytic performance can be put down to the synergistic effect of g-C3N4, BiVO4, and H2O2 in Z-scheme mechanism, which give rise to enlarge optical absorption range and suppress the recombination of photo-generated charge carrier.



This work was supported by the Shanxi Provincial Key Research and Development Plan (general) Social Development Project (201703D321009-5).


  1. 1.
    M. Bilal, T. Rasheed, H.M.N. Iqbal, C.L. Li, H. Wang, H.B. Hu, W. Wang, X.H. Zhang, Photocatalytic degradation, toxicological assessment and degradation pathway of C.I. Reactive blue 19 dye. Chem. Eng. Res. Des. 129, 384–390 (2018)CrossRefGoogle Scholar
  2. 2.
    Z.J. Huang, P.X. Wu, B.N. Gong, S.S. Yang, H.L. Li, Z. Zhu, L.H. Cui, Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade reactive blue 19 in a Fenton system under sunlight irradiation at neutral pH. Appl. Surf. Sci. 370, 209–217 (2016)CrossRefGoogle Scholar
  3. 3.
    M.A.N. Khan, M. Siddique, F. Wahid, R. Khan, Removal of reactive blue 19 dye by sono, photo and sonophotocatalytic oxidation using visible light. Ultrason. Sonochem. 26, 370–377 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Kostic, M. Radović, N. Velinov, S. Najdanović, D. Bojić, A. Hurt, A. Bojić, Synthesis of mesoporous triple-metal nanosorbent from layered double hydroxide as an efficient new sorbent for removal of dye from water and wastewater. Ecotoxicol. Environ. Saf. 159, 332–341 (2018)CrossRefGoogle Scholar
  5. 5.
    I. Morosanu, C. Teodosiu, A. Coroaba, C. Paduraru, Sequencing batch biosorption of micropollutants from aqueous effluents by rapeseed waste: experimental assessment and statistical modelling. J. Environ. Manag. 230, 110–118 (2019)CrossRefGoogle Scholar
  6. 6.
    L. Liu, R. Wang, J. Yu, L.J. Hu, Z.G. Wang, Y.M. Fan, Adsorption of reactive blue 19 from aqueous solution by chitin nanofiber-/nanowhisker-based hydrogels. RSC Adv. 8, 15804–15812 (2018)CrossRefGoogle Scholar
  7. 7.
    V. Mahmoodi, A. Ahmadpour, T.R. Bastami, M.T.H. Mosavian, PVP assisted synthesis of high efficient BiOI/graphene oxide nanohybrid and its photocatalytic performance in degradation of organic dye pollutants. Sol. Energy 176, 483–495 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Enhanced bio-catalytic performance and dye degradation potential of chitosan-encapsulated horseradish peroxidase in a packed bed reactor system. Sci. Total Environ. 575, 1352–1360 (2017)CrossRefGoogle Scholar
  9. 9.
    C.R. Holkar, H. Arora, D. Halder, D.V. Pinjari, Biodegradation of reactive blue 19 with simultaneous electricity generation by the newly isolated electrogenic Klebsiella sp. C NCIM 5546 bacterium in a microbial fuel cell. Int. Biodeterior. Biodegrad. 133, 194–201 (2018)CrossRefGoogle Scholar
  10. 10.
    L.L. Li, H. Yuan, F. Liao, B. He, S.Q. Gao, G.B. Wen, X. Tan, Y.W. Lin, Rational design of artificial dye-decolorizing peroxidases using myoglobin by engineering Tyr/Trp in the heme center. Dalton Trans. 46, 11230–11238 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Banaei, S. Samadi, S. Karimi, H. Vojoudi, E. Pourbasheer, A. Badiei, Synthesis of silica gel modified with 2,2′-(hexane-1,6-diylbis(oxy)) dibenzaldehyde as a new adsorbent for the removal of reactive yellow 84 and reactive blue 19 dyes from aqueous solutions: equilibrium and thermodynamic studies. Powder Technol. 319, 60–70 (2017)CrossRefGoogle Scholar
  12. 12.
    W. Zhou, Y.N. Ding, J.H. Gao, K.K. Kou, Y. Wang, X.X. Meng, S.H. Wu, Y.K. Qin, Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal. Environ. Sci. Pollut. Res. 25, 6015–6025 (2018)CrossRefGoogle Scholar
  13. 13.
    D. Maučec, A. Šuligoj, A. Ristić, G. Dražić, A. Pintar, N.N. Tušar, Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH. Catal. Today 310, 32–41 (2018)CrossRefGoogle Scholar
  14. 14.
    R.R. Hao, G.H. Wang, C.J. Jiang, H. Tang, Q.C. Xu, In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci. 411, 400–410 (2017)CrossRefGoogle Scholar
  15. 15.
    S.W. Duo, R.F. Zhong, Z. Liu, J. Wang, T.Z. Liu, C.L. Huang, H.S. Wu, One-step hydrothermal synthesis of ZnO microflowers and their composition-/hollow nanorod-dependent wettability and photocatalytic property. J. Phys. Chem. Solids 120, 20–33 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Wu, H. Wang, W.G. Tu, S.Y. Wu, Y. Liu, Y.Z. Tan, H.J. Luo, X.Z. Yuan, J.W. Chew, Petal-like CdS nanostructures coated with exfoliated sulfur-doped carbon nitride via chemically activated chain termination for enhanced visible-light–driven photocatalytic water purification and H2 generation. Appl. Catal. B: Environ. 229, 181–191 (2018)CrossRefGoogle Scholar
  17. 17.
    Z.W. Chen, C. Feng, W.B. Li, Z.Y. Sun, J. Hou, X.B. Li, L.K. Xu, M.X. Sun, Y.Y. Bu, Enhanced visible-light-driven photocatalytic activities of 0D/1D heterojunction carbon quantum dot modified CdS nanowires. Chin. J. Catal. 39, 841–848 (2018)CrossRefGoogle Scholar
  18. 18.
    Q.B. Wei, M.L. Yin, Y. Yao, Synthesis of sphere-like ZnS architectures via a solvothermal method and their visible-light catalytic properties. J. Mater. Sci.: Mater. Electron. 28, 17827–17832 (2017)Google Scholar
  19. 19.
    H.F. Cheng, B.B. Huang, Y. Dai, Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6, 2009–2026 (2014)CrossRefGoogle Scholar
  20. 20.
    L.Y. Zhang, Z.X. Dai, G.H. Zheng, Z.F. Yao, J.J. Mu, Superior visible light photocatalytic performance of reticular BiVO4 synthesized via a modified sol–gel method. RSC Adv. 8, 10654–10664 (2018)CrossRefGoogle Scholar
  21. 21.
    B. Rodriguez-Cabo, I. Rodriguez-Palmeiro, R. Corchero, R. Rodil, E. Rodil, A. Arce, A. Soto, Photocatalytic degradation of methyl orange, methylene blue and rhodamine B with AgCl nanocatalyst synthesised from its bulk material in the ionic liquid [P6 6 6 14]Cl. Water Sci. Technol. 75, 128–140 (2017)CrossRefGoogle Scholar
  22. 22.
    L. Tian, J.Y. Li, F. Liang, J.K. Wang, S.S. Li, H.J. Zhang, S.W. Zhang, Molten salt synthesis of tetragonal carbon nitride hollow tubes and their application for removal of pollutants from wastewater. Appl. Catal. B: Environ. 225, 307–313 (2018)CrossRefGoogle Scholar
  23. 23.
    Z. Wei, J.S. Hu, K.J. Zhu, W.Q. Wei, X.G. Ma, Y.F. Zhu, Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light. Appl. Catal. B: Environ. 226, 616–623 (2018)CrossRefGoogle Scholar
  24. 24.
    Y. Li, X.Y. Xiao, Z.H. Ye, Facile fabrication of tetragonal scheelite (t-s) BiVO4/g-C3N4 composites with enhanced photocatalytic performance. Ceram. Int. 44, 7067–7076 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Kalikeri, N. Kamath, D.J. Gadgil, V. Shetty Kodialbail, Visible light-induced photocatalytic degradation of reactive blue-19 over highly efficient polyaniline-TiO2 nanocomposite: a comparative study with solar and UV photocatalysis. Environ. Sci. Pollut. Res. 25, 3731–3744 (2018)CrossRefGoogle Scholar
  26. 26.
    X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Wang, X.Y. Kong, W.T. Zhang, W.X. Zhu, L.J. Huang, J. Wang, X. Zhang, X.N. Liu, N. Hu, Y.R. Suo, J.L. Wang, Mechanism insight into rapid photocatalytic disinfection of Salmonella based on vanadate QDs-interspersed g-C3N4 heterostructures. Appl. Catal. B: Environ. 225, 228–237 (2018)CrossRefGoogle Scholar
  28. 28.
    R.Z. Sun, Q.M. Shi, M. Zhang, L.H. Xie, J.S. Chen, X.M. Yang, M.X. Chen, W.R. Zhao, Enhanced photocatalytic oxidation of toluene with a coral-like direct Z-scheme BiVO4/g-C3N4 photocatalyst. J. Alloys Compd. 714, 619–626 (2017)CrossRefGoogle Scholar
  29. 29.
    X.W. Shi, M. Fujitsuka, Z.Z. Lou, P. Zhang, T. Majima, In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalysts with efficient charge separation boosting water reduction under visible light. J. Mater. Chem. A 5, 9671–9681 (2017)CrossRefGoogle Scholar
  30. 30.
    Y.Z. Liu, H.Y. Zhang, J. Ke, J.Q. Zhang, W.J. Tian, X.Y. Xu, X.G. Duan, H.Q. Sun, M.O. Tade, S.B. Wang, 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 228, 64–74 (2018)CrossRefGoogle Scholar
  31. 31.
    Y. Wu, H. Wang, W.G. Tu, Y. Liu, Y.Z. Tan, X.Z. Yuan, J.W. Chew, Quasi-polymeric construction of stable perovskite-type LaFeO3/g-C3N4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect. J. Hazard. Mater. 347, 412–422 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Zhao, H.Z. Zhang, G.W. Cui, Y.M. Dong, G.L. Wang, P.P. Jiang, X.M. Wu, N. Zhao, A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C3N4. Appl. Catal. B: Environ. 225, 284–290 (2018)CrossRefGoogle Scholar
  33. 33.
    S.A. Ansari, M.H. Cho, Simple and large scale construction of MoS2-g-C3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 7, 43055 (2017)CrossRefGoogle Scholar
  34. 34.
    S. Gholizadeh Khasevani, N. Mohaghegh, M.R. Gholami, Kinetic study of navy blue photocatalytic degradation over Ag3PO4/BiPO4@MIL-88B(Fe)@g-C3N4 core@shell nanocomposite under visible light irradiation. New J. Chem. 41, 10390–10396 (2017)CrossRefGoogle Scholar
  35. 35.
    L.Y. Lu, G.H. Wang, M. Zou, J. Wang, J. Li, Effects of calcining temperature on formation of hierarchical TiO2/g-C3N4 hybrids as an effective Z-scheme heterojunction photocatalyst. Appl. Surf. Sci. 441, 1012–1023 (2018)CrossRefGoogle Scholar
  36. 36.
    B.Y. Liang, D.H. Han, C.H. Sun, W.X. Zhang, Q. Qin, Synthesis of SnO/g-C3N4 visible light driven photocatalysts via grinding assisted ultrasonic route. Ceram. Int. 44, 7315–7318 (2018)CrossRefGoogle Scholar
  37. 37.
    J.C. Wang, C.X. Cui, Y. Li, L. Liu, Y.P. Zhang, W. Shi, Porous Mn doped g-C3N4 photocatalysts for enhanced synergetic degradation under visible-light illumination. J. Hazard. Mater. 339, 43–53 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Wang, P. Guo, Q.S. Guo, P.G. Jönsson, Z. Zhao, Fabrication of novel g-C3N4/nanocage ZnS composites with enhanced photocatalytic activities under visible light irradiation. Cryst. Eng. Commun. 16, 4485–4492 (2014)CrossRefGoogle Scholar
  39. 39.
    H.J. Wu, C.M. Li, H.N. Che, H. Hu, W. Hu, C.B. Liu, J.Z. Ai, H.J. Dong, Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance. Appl. Surf. Sci. 440, 308–319 (2018)CrossRefGoogle Scholar
  40. 40.
    Y.Y. Zhao, X.H. Liang, Y.B. Wang, H.X. Shi, E.Z. Liu, J. Fan, X.Y. Hu, Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. J. Colloid Interface Sci. 523, 7–17 (2018)CrossRefGoogle Scholar
  41. 41.
    D.D. Chen, S.X. Wu, J.Z. Fang, S.Y. Lu, G.Y. Zhou, W.H. Feng, F. Yang, Y. Chen, Z.Q. Fang, A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Sep. Purif. Technol. 193, 232–241 (2018)CrossRefGoogle Scholar
  42. 42.
    Y.Z. Hong, C.S. Li, B.X. Yin, D. Li, Z.Y. Zhang, B.D. Mao, W.Q. Fan, W. Gu, W.D. Shi, Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite. Chem. Eng. J. 338, 137–146 (2018)CrossRefGoogle Scholar
  43. 43.
    H.J. He, L.H. Huang, Z.J. Zhong, S.Z. Tan, Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 441, 285–294 (2018)CrossRefGoogle Scholar
  44. 44.
    F. Chen, Q. Yang, Y.L. Wang, J.W. Zhao, D.B. Wang, X.M. Li, Z. Guo, H. Wang, Y.C. Deng, C.G. Niu, G.M. Zeng, Novel ternary heterojunction photocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B: Environ. 205, 133–147 (2017)CrossRefGoogle Scholar
  45. 45.
    F.Q. Zhou, J.C. Fan, Q.J. Xu, Y.L. Min, BiVO4 nanowires decorated with CdS nanoparticles as Z-scheme photocatalyst with enhanced H2 generation. Appl. Catal. B: Environ. 201, 77–83 (2017)CrossRefGoogle Scholar
  46. 46.
    Y.C. Deng, L. Tang, C.Y. Feng, G.M. Zeng, J.J. Wang, Y.Y. Zhou, Y.N. Liu, B. Peng, H.P. Feng, Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. J. Hazard. Mater. 344, 758–769 (2018)CrossRefGoogle Scholar
  47. 47.
    A.C. Affam, M. Chaudhuri, Degradation of pesticides chlorpyrifos, cypermethrin and chlorothalonil in aqueous solution by TiO2 photocatalysis. J. Environ. Manag. 130, 160–165 (2013)CrossRefGoogle Scholar
  48. 48.
    X.S. Rong, F.X. Qiu, J. Rong, X.L. Zhu, J. Yan, D.Y. Yang, Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2. Mater. Lett. 164, 127–131 (2016)CrossRefGoogle Scholar
  49. 49.
    S.W. Hu, L.W. Yang, Y. Tian, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Simultaneous nanostructure and heterojunction engineering of graphitic carbon nitride via in situ Ag doping for enhanced photoelectrochemical activity. Appl. Catal. B: Environ. 163, 611–622 (2015)CrossRefGoogle Scholar
  50. 50.
    Q.G. Meng, H.Q. Lv, M.Z. Yuan, Z. Chen, Z.H. Chen, X. Wang, In situ hydrothermal construction of direct solid-state nano-Z-scheme BiVO4/pyridine-doped g-C3N4 photocatalyst with efficient visible-light-induced photocatalytic degradation of phenol and dyes. ACS Omega 2, 2728–2739 (2017)CrossRefGoogle Scholar
  51. 51.
    Z.Q. He, Y.Q. Shi, C. Gao, L. Wen, J.M. Chen, S. Song, BiOCl/BiVO4 p–n heterojunction with enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 118, 389–398 (2013)CrossRefGoogle Scholar
  52. 52.
    N. Tian, H.W. Huang, Y. He, Y.X. Guo, T.R. Zhang, Y.H. Zhang, Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity. Dalton Trans. 44, 4297–4307 (2015)CrossRefGoogle Scholar
  53. 53.
    L.Q. Jing, Y.G. Xu, Z.G. Chen, M.Q. He, M. Xie, J. Liu, H. Xu, S.Q. Huang, H.M. Li, Different morphologies of SnS2 supported on 2D g-C3N4 for excellent and stable visible light photocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 6, 5132–5141 (2018)CrossRefGoogle Scholar
  54. 54.
    D.L. Jiang, P. Xiao, L.Q. Shao, D. Li, M. Chen, RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. Ind. Eng. Chem. Res. 56, 8823–8832 (2017)CrossRefGoogle Scholar
  55. 55.
    Z.S. Zhang, M. Wang, W.Q. Cui, H. Sui, Synthesis and characterization of a core–shell BiVO4@g-C3N4 photo-catalyst with enhanced photocatalytic activity under visible light irradiation. RSC Adv. 7, 8167–8177 (2017)CrossRefGoogle Scholar
  56. 56.
    S.P. Wan, M. Ou, W. Cai, S.L. Zhang, Q. Zhong, Preparation, characterization, and mechanistic analysis of BiVO4/CaIn2S4 hybrids that photocatalyze NO removal under visible light. J. Phys. Chem. Solids 122, 239–245 (2018)CrossRefGoogle Scholar
  57. 57.
    Y.J. Si, Y.J. Zhang, L.H. Lu, S. Zhang, Y. Chen, J.H. Liu, H.Y. Jin, S.E. Hou, K. Dai, W.G. Song, Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon. Appl. Catal. B: Environ. 225, 512–518 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Environmental Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.China Institute for Radiation ProtectionTaiyuanChina
  3. 3.School of Mechanical EngineeringUniversity of Western AustraliaPerthAustralia

Personalised recommendations