Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15980–15988 | Cite as

Development of SnSe thin films through selenization of sputtered Sn-metal films

  • Mohan Reddy Pallavolu
  • Vasudeva Reddy Minnam Reddy
  • Phaneendra Reddy Guddeti
  • Chinho ParkEmail author
Article
  • 104 Downloads

Abstract

Tin monoselenide (SnSe) thin films with thickness in the range of 0.72–1.00 μm were prepared by the two-stage process (metallization by sputtering + selenization by rapid thermal annealing) using Sn target and selenium powder at different selenization temperatures in the range of 300–450 °C. The formation of single-phase orthorhombic(OR)-SnSe films at ≥ 400 °C was observed, whereas the secondary phase of SnSe2 in addition to OR-SnSe was formed when the films selenized at ≤ 350 °C. The single-phase OR-SnSe films exhibited Raman modes at 33 cm−1, 71 cm−1, 108 cm−1, 130 cm−1, and 151 cm−1. The crystallinity and grain size of the OR-SnSe films were improved with increasing of selenization temperature. The tin films selenized at 400 °C showed the composition ratio of Se/Sn = 0.99, the direct bandgap energy of 1.2 eV, and the p-type conductivity with electrical resistivity of 12.71 Ω cm, the mobility of 2.03 cm2 V−1 s−1, and carrier concentration of 2.42 × 1017 cm−3. The above opto-electronic properties of single-phase OR-SnSe films selenized at 400 °C indicated that these films could be used to attain good device efficiency of solar cells.

Notes

Acknowledgements

This work was supported by “The Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010012980).

References

  1. 1.
    R. Chandran, S.K. Panda, A. Mallik, Mater. Renew. Sustain. Energy 7, 6 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi (RRL) 10, 583 (2016)CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Adv. Energy Mater. 5, 1401372 (2015)CrossRefGoogle Scholar
  5. 5.
    H. Lee, D. Jeong, T. Mun, B. Pejjai, V.R.M. Reddy, T.J. Anderson, C. Park, Korean J. Chem. Eng. 33, 2486 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Indirajith, T.P. Srinivasan, K. Ramamurthi, R. Gopalakrishnan, Curr. Appl. Phys. 10, 1402 (2010)CrossRefGoogle Scholar
  7. 7.
    E. Barrios-Salgado, M.T.S. Nair, P.K. Nair, ECS J. Solid State Sci. Technol. 3, Q169 (2014)CrossRefGoogle Scholar
  8. 8.
    V.R.M. Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci. 27, 5491 (2016)Google Scholar
  9. 9.
    D.I. Bletskan, J. Ovonic Res. 1, 61 (2005)Google Scholar
  10. 10.
    W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)CrossRefGoogle Scholar
  11. 11.
    V.R.M. Reddy, G. Lindwall, B. Pejjai, S. Gedi, T.R.R. Kotte, M. Sugiyama, Z.-K. Liu, C. Park, Sol. Energy Mater. Sol. Cells 176, 251 (2018)CrossRefGoogle Scholar
  12. 12.
    N.R. Mathews, Sol. Energy 86, 1010 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Bindu, P.K. Nair, Semicond. Sci. Technol. 19, 1348 (2004)CrossRefGoogle Scholar
  14. 14.
    C. Guillén, J. Montero, J. Herrero, Phys. Status Solidi (A) 208, 679 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Delice, M. Isik, H.H. Gullu, M. Terlemezoglu, O.B. Surucu, M. Parlak, N.M. Gasanly, J. Phys. Chem. Solids 131, 22 (2019)CrossRefGoogle Scholar
  16. 16.
    T.S. Shyju, S. Anandhi, R. Indirajith, R. Gopalakrishnan, J. Cryst. Growth 337, 38 (2011)CrossRefGoogle Scholar
  17. 17.
    T.S. Rao, A.K. Chaudhuri, Bull. Mater. Sci. 19, 449 (1996)CrossRefGoogle Scholar
  18. 18.
    T. Terada, J. Phys. D 4, 1991 (1971)CrossRefGoogle Scholar
  19. 19.
    V.E. Drozd, I.O. Nikiforova, V.B. Bogevolnov, A.M. Yafyasov, E.O. Filatova, D. Papazoglou, J. Phys. D 42, 125306 (2009)CrossRefGoogle Scholar
  20. 20.
    Z. Zainal, N. Saravanan, K. Anuar, M.Z. Hussein, W.M.M. Yunus, Mater. Sci. Eng. B 107, 181 (2004)CrossRefGoogle Scholar
  21. 21.
    M. Edoff, Ambio 41, 112 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Boone, O.J. Kleppa, Thermochim. Acta 197, 109 (1992)CrossRefGoogle Scholar
  23. 23.
    S. Anwar, S. Gowthamaraju, B.K. Mishra, S.K. Singh, S. Anwar, Mater. Chem. Phys. 153, 236 (2015)CrossRefGoogle Scholar
  24. 24.
    A.G. De la Torre, M.A.G. Aranda, J. Appl. Crystallogr. 36, 1169 (2003)CrossRefGoogle Scholar
  25. 25.
    A. Altomare, F. Capitelli, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, Crystals 8, 203 (2018)CrossRefGoogle Scholar
  26. 26.
    B.H. Toby, Powder Diffr. 21, 67 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Chen, K. Cai, W. Zhao, Phys. B 407, 4154 (2012)CrossRefGoogle Scholar
  28. 28.
    L.L. Baranowski, P. Zawadzki, S. Lany, E.S. Toberer, A. Zakutayev, Semicond. Sci. Technol. 31, 123004 (2016)CrossRefGoogle Scholar
  29. 29.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)CrossRefGoogle Scholar
  30. 30.
    D.G. Mead, J.C. Irwin, Solid State Commun. 20, 885 (1976)CrossRefGoogle Scholar
  31. 31.
    H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B 15, 2177 (1977)CrossRefGoogle Scholar
  32. 32.
    P.A. Fernandes, M.G. Sousa, P.M.P. Salomé, J.P. Leitão, A.F. Da Cunha, CrystEngComm 15, 10278 (2013)CrossRefGoogle Scholar
  33. 33.
    N. kumar, U. Parihar, R. Kumar, K.J. Patel, C.J. Panchal, N. Padha, Am. J. Mater. Sci. 2, 41 (2012)CrossRefGoogle Scholar
  34. 34.
    K. Assili, O. Gonzalez, K. Alouani, X. Vilanova, Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.10.004 Google Scholar
  35. 35.
    Y. Gupta, P. Arun, J. Semicond. 38, 113001 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972)CrossRefGoogle Scholar
  37. 37.
    G. Jeong, J. Kim, O. Gunawan, S.R. Pae, S.H. Kim, J.Y. Song, Y.S. Lee, B. Shin, J. Alloys Compd. 722, 474 (2017)CrossRefGoogle Scholar
  38. 38.
    D. Martínez-Escobar, M. Ramachandran, A. Sánchez-Juárez, J.S.N. Rios, Thin Solid Films 535, 390 (2013)CrossRefGoogle Scholar
  39. 39.
    A.T. Duong, V.Q. Nguyen, G. Duvjir, V.T. Duong, S. Kwon, J.Y. Song, J.K. Lee, J.E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun. 7, 13713 (2016)CrossRefGoogle Scholar
  40. 40.
    V.R.M. Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K.Y.B. Reddy, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, J. Ind. Eng. Chem. 76, 39 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohan Reddy Pallavolu
    • 1
  • Vasudeva Reddy Minnam Reddy
    • 1
  • Phaneendra Reddy Guddeti
    • 2
  • Chinho Park
    • 1
    Email author
  1. 1.School of Chemical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Solar Energy Laboratory, Department of PhysicsSri Venkateswara UniversityTirupatiIndia

Personalised recommendations