Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15972–15979 | Cite as

Influence of synthesis method on the structural, optical and magnetic properties of BiFeO3–ZnFe2O4 nanocomposites

  • Shahrzad Falahatnezhad
  • Hamed MalekiEmail author
  • Asma Mohammadi Badizi
  • Mahdieh Noorzadeh
Article
  • 41 Downloads

Abstract

In this study, single-phase polycrystalline (1 − x)BiFeO3–xZnFe2O4 (BFO–ZFO, x = 0, 0.5, 1) nanocomposites have been synthesized by sol–gel (SG) and hydrothermal (HT) methods and the effect of synthesis method on structural, optical and magnetic properties of all products have been studied. The as-prepared samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) images, diffuse reflectance UV–Vis spectroscopy (DRS) and vibrating sample magnetometer (VSM). XRD patterns reveal the rhombohedrally-distorted perovskite phase of bismuth ferrite and the cubic spinel phase of zinc ferrite. The crystallite size and micro-strain of nanograins were calculated using Scherrer formula and Williamson–Hall analysis. FTIR analysis confirms ferrite phases and the functional groups in the wavenumber range of 400–4000 cm−1 were observed. SEM analysis confirmed the agglomerated nature of the particles with continuous grain growth in all directions. Magnetic hysteresis loops also showed the weak ferromagnetic behavior of BFO and paramagnetic (SG_ZFO) and superparamagnetic (HT_ZFO) behavior of zinc ferrite depending on their synthesis method at room temperature (RT). Remarkably, SG_BFO–ZFO nanocomposite also has a little more magnetization compared with pure BFO and ZFO nanoparticles. Finally, characteristic measurements indicated that the as-prepared nanoparticles, depending on their preparation route, behave differently.

Notes

References

  1. 1.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science (New York, N.Y.) 299(5613), 1719 (2003)Google Scholar
  2. 2.
    N.A. Hill, J. Phys. Chem. B 104(29), 6694 (2000)Google Scholar
  3. 3.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442(7104), 759 (2006)Google Scholar
  4. 4.
    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463 (2009)Google Scholar
  5. 5.
    H. Maleki, M. Haselpour, R. Fathi, J. Mater. Sci.: Mater. Electron. 29(5), 4320 (2018)Google Scholar
  6. 6.
    H. Maleki, J. Magn. Magn. Mater. 458, 277 (2018)Google Scholar
  7. 7.
    H. Maleki, J. Mater. Sci.: Mater. Electron. 29(14), 11862 (2018)Google Scholar
  8. 8.
    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr. Ferroelectr. 126(1), 47 (2011)Google Scholar
  9. 9.
    L. Bian, Y. Li, J. Li, J. Nie, F. Dong, M. Song, L. Wang, H. Dong, H. Li, X. Nie, X. Zhang, X. Li, L. Xie, J. Hazard. Mater. 336, 174 (2017)Google Scholar
  10. 10.
    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95(6), 062909 (2009)Google Scholar
  11. 11.
    W. Ji, K. Yao, Y.C. Liang, Adv. Mater. 22(15), 1763 (2010)Google Scholar
  12. 12.
    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429(6990), 392 (2004)Google Scholar
  13. 13.
    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater. 19(19), 2889 (2007)Google Scholar
  14. 14.
    H. Maleki, M. Kazemeini, A.S. Larimi, F. Khorasheh, J. Ind. Eng. Chem. 47, 399 (2017)Google Scholar
  15. 15.
    H. Maleki, M. Kazemeini, J. Fuel Chem. Technol. 45(4), 442 (2017)Google Scholar
  16. 16.
    G.A. Smolenskiĭ, I.E. Chupis, Soviet Phys. Uspekhi 25(7), 475 (1982)Google Scholar
  17. 17.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13(10), 1931 (1980)Google Scholar
  18. 18.
    H. Maleki, S. Zare, R. Fathi, J. Supercond. Novel Magn. 31(8), 2539 (2018)Google Scholar
  19. 19.
    H. Maleki, M. Zakeri, R. Fathi, Appl. Phys. A 124(11), 728 (2018)Google Scholar
  20. 20.
    H. Singh, K.L. Yadav, J. Phys.: Condens. Matter 23(38), 385901 (2011)Google Scholar
  21. 21.
    P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18 (2015)Google Scholar
  22. 22.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Ceram. Int. 42(11), 12838 (2016)Google Scholar
  23. 23.
    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M.A. Bake, L. Zheng, J. Wang, H. Qian, R. Wu, K. Ibrahim, J. Alloys Compd. 710, 843 (2017)Google Scholar
  24. 24.
    K.T. Liu, J. Li, J.B. Xu, F.L. Xu, L. Wang, L. Bian, J. Mater. Sci.: Mater. Electron. 28(7), 5609 (2017)Google Scholar
  25. 25.
    S.-Z. Lu, X. Qi, J. Alloys Compd. 708, 194 (2017)Google Scholar
  26. 26.
    J.-P. Zhou, R.-L. Yang, R.-J. Xiao, X.-M. Chen, C.-Y. Deng, Mater. Res. Bull. 47(11), 3630 (2012)Google Scholar
  27. 27.
    V. Kumar, A. Gaur, R.K. Kotnala, Superlattices Microstruct. 69, 1 (2014)Google Scholar
  28. 28.
    H. Maleki, S. Falahatnezhad, M. Taraz, J. Supercond. Novel Magn. 31(10), 3217–3222 (2018)Google Scholar
  29. 29.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compd. 509(9), 3917 (2011)Google Scholar
  30. 30.
    I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater. 324(15), 2397 (2012)Google Scholar
  31. 31.
    W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G.M. Kalvius, A. Martin, M.K. Krause, I. Halevy, J. Gal, W. Schäfer, G. Will, M. Hillberg, R. Wäppling, Phys. Rev. B 53(14), 9143 (1996)Google Scholar
  32. 32.
    E. Ranjith Kumar, T. Arunkumar, T. Prakash, Superlattices Microstruct. 85, 530 (2015)Google Scholar
  33. 33.
    S. Zawar, S. Atiq, S. Riaz, S. Naseem, Superlattices Microstruct. 93, 50 (2016)Google Scholar
  34. 34.
    K. Kamazawa, Y. Tsunoda, K. Odaka, K. Kohn, J. Phys. Chem. Solids 60(8–9), 1261 (1999)Google Scholar
  35. 35.
    J. Li, M. Zou, W. Wen, Y. Zhao, Y. Lin, L. Chen, H. Lai, L. Guan, Z. Huang, J. Mater. Chem. A 2(26), 10257 (2014)Google Scholar
  36. 36.
    X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, ACS Appl. Mater. Interfaces. 7(32), 17811 (2015)Google Scholar
  37. 37.
    F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 26(38), 6622 (2014)Google Scholar
  38. 38.
    Y. Fu, X. Wang, Ind. Eng. Chem. Res. 50(12), 7210 (2011)Google Scholar
  39. 39.
    S. Falahatnezhad, H. Maleki, J. Mater. Sci.: Mater. Electron. 29(20), 17360 (2018)Google Scholar
  40. 40.
    K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, J. Alloys Compd. 720, 395 (2017)Google Scholar
  41. 41.
    K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Polym. Int. 65(12), 1482 (2016)Google Scholar
  42. 42.
    P. Kurinjinathan, K.T. Arul, Recent Patents Mater. Sci. 11(2), 91 (2019)Google Scholar
  43. 43.
    C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Cambridge, 1990)Google Scholar
  44. 44.
    A.J. Perrotta, Mater. Res. Innov. 2(1), 33 (1998)Google Scholar
  45. 45.
    O.V. Al’myasheva, E.N. Korytkova, A.V. Maslov, V.V. Gusarov, Inorg. Mater. 41(5), 460 (2005)Google Scholar
  46. 46.
    G. Williamson, W. Hall, Acta Metall. 1(1), 22 (1953)Google Scholar
  47. 47.
    X. Zhai, H. Deng, W. Zhou, P. Yang, J. Chu, J. Phys. D Appl. Phys. 48(38), 385002 (2015)Google Scholar
  48. 48.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci.: Mater. Electron. 21(4), 343 (2010)Google Scholar
  49. 49.
    A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, J. Magn. Magn. Mater. 323(15), 2049 (2011)Google Scholar
  50. 50.
    P.S.V. Mocherla, S. Gautam, K.H. Chae, M.S.R. Rao, C. Sudakar, Mater. Res. Exp. 2(9), 095012 (2015)Google Scholar
  51. 51.
    K.V. Chandekar, K.M. Kant, Superlattices Microstruct. 111, 610 (2017)Google Scholar
  52. 52.
    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509(6), 2909 (2011)Google Scholar
  53. 53.
    H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, J. Alloys Compd. 509(5), 2192 (2011)Google Scholar
  54. 54.
    A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State 45(1), 141 (2003)Google Scholar
  55. 55.
    G. Biasotto, A. Simões, C. Foschini, S. Antônio, M. Zaghete, J. Varela, Process. Appl. Ceram. 5(3), 171 (2011)Google Scholar
  56. 56.
    Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mater. 7(6), 478 (2008)Google Scholar
  57. 57.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6(1), 21 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations