Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15964–15971 | Cite as

Effect of polycrystalline Cu microstructures on IMC growth behavior at Sn/Cu soldering interface

  • Zhidan Zhu
  • Haoran MaEmail author
  • Shengyan Shang
  • Haitao MaEmail author
  • Yunpeng Wang
  • Xiaogan Li


This paper investigated the morphologies of intermetallic compounds (IMCs) forming between pure Sn solders and different polycrystalline copper substrates with microstructures of fiber structure, equiaxed crystal and columnar crystal respectively as well as the effect of Cu microstructures on IMC growth kinetics. The results showed that when multiple IMC grains could be accommodated in a single grain area of substrates, the IMC growth behavior on some grains of polycrystalline substrates was similar to that on single crystalline substrate of same orientation. The difference on polycrystalline Cu substrates was that IMCs with different morphologies appeared alternately. Furthermore, the IMC distribution at soldering interface was stripy on fiber structure and blocky on equiaxed crystal substrates. With increasing of reflow temperature or time, IMCs with different morphologies followed their own growth behavior. In addition, the grain growth rate of IMCs on columnar crystal substrate was higher than that on the other two substrates due to different Cu supply and diffusion abilities.



This work was supported by the National Natural Science Foundation of China under Grant No. 51871040 and “Research Fund for International Young Scientists” of National Natural Science Foundation of China under Grant No. 51750110504. This project was supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540163) and “the Fundamental Research Funds for the Central Universities” China (Project No. DUT18GJ207).


  1. 1.
    M.L. Huang, F. Yang, N. Zhao, Z.J. Zhang, Mater. Lett. 139, 42–45 (2015)CrossRefGoogle Scholar
  2. 2.
    C. Lee, K. Lin, Jpn. J. Appl. Phys. 33, 2684–2688 (1994)CrossRefGoogle Scholar
  3. 3.
    T.M. Korhonen, P. Su, S.J. Hong, M.A. Korhonen, C.Y. Li, J. Electron. Mater. 29, 1194–1199 (2000)CrossRefGoogle Scholar
  4. 4.
    M.N. Islam, Y.C. Chan, A. Sharif, M.O. Alam, Microelectron. Reliab. 43, 2031–2037 (2003)CrossRefGoogle Scholar
  5. 5.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. 49, 1–60 (2005)CrossRefGoogle Scholar
  6. 6.
    S.C. Yang, W.C. Chang, Y.W. Wang, C.R. Kao, J. Electron. Mater. 38, 25–32 (2009)CrossRefGoogle Scholar
  7. 7.
    H. Lin, J. Duh, Interfacial reaction between Sn–3.0Ag–0.5Cu liquid solder and Ni–xZn novel UBM layers. Surf. Coat. Technol. 206, 1941–1946 (2011)CrossRefGoogle Scholar
  8. 8.
    T.J. Kim, Y.M. Kim, Y. Kim, J. Alloy. Compd. 535, 33–38 (2012)CrossRefGoogle Scholar
  9. 9.
    M. Yang, M. Li, L. Wang, Y. Fu, J. Kim, L. Weng, J. Electron. Mater. 40, 176–188 (2011)CrossRefGoogle Scholar
  10. 10.
    M.S. Park, M.K. Stephenson, C. Shannon, L.A. Cáceres Díaz, K.A. Hudspeth, S.L. Gibbons, J. Muñoz-Saldaña, R. Arróyave, Acta Mater. 60, 5125–5134 (2012)CrossRefGoogle Scholar
  11. 11.
    L. Qu, N. Zhao, H.J. Zhao, M.L. Huang, H.T. Ma, Scr. Mater. 72–73, 43–46 (2014)CrossRefGoogle Scholar
  12. 12.
    J.O. Suh, K.N. Tu, N. Tamura, Appl. Phys. Lett. 91, 51907 (2007)CrossRefGoogle Scholar
  13. 13.
    H.F. Zou, H.J. Yang, Z.F. Zhang, Acta Mater. 56, 2649–2662 (2008)CrossRefGoogle Scholar
  14. 14.
    J.O. Suh, K.N. Tu, N. Tamura, JOM-US 58, 63–66 (2006)CrossRefGoogle Scholar
  15. 15.
    J.O. Suh, K.N. Tu, N. Tamura, J. Appl. Phys. 102, 63511 (2007)CrossRefGoogle Scholar
  16. 16.
    P.J. Shang, Z.Q. Liu, X.Y. Pang, D.X. Li, J.K. Shang, Acta Mater. 57, 4697–4706 (2009)CrossRefGoogle Scholar
  17. 17.
    H.F. Zou, Z.F. Zhang, J. Appl. Phys. 108, 103518 (2010)CrossRefGoogle Scholar
  18. 18.
    Y. Tian, R. Zhang, C. Hang, L. Niu, C. Wang, Mater. Charact. 88, 58–68 (2014)CrossRefGoogle Scholar
  19. 19.
    Z.H. Zhang, M.Y. Li, Z.Q. Liu, S.H. Yang, Acta Mater. 104, 1–8 (2016)CrossRefGoogle Scholar
  20. 20.
    Z.H. Zhang, H.J. Cao, H.F. Yang, M.Y. Li, Y.X. Yu, J. Electron. Mater. 45, 5985–5995 (2016)CrossRefGoogle Scholar
  21. 21.
    Z. Zhang, H. Cao, M. Li, Y. Yu, H. Yang, S. Yang, Mater. Des. 94, 280–285 (2016)CrossRefGoogle Scholar
  22. 22.
    K.N. Tu, K. Zeng, Mater. Sci. Eng., R 34, 1–58 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of MicroelectronicsDalian University of TechnologyDalianChina

Personalised recommendations