Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15935–15942 | Cite as

Synthesis of LiCo0.94Mg0.06O2: a promising material with high dielectric and microwave absorption performance

  • Minghao YangEmail author
  • Wancheng Zhou
  • Fa Luo
  • Dongmei Zhu


In this work, we initially report dielectric and microwave absorption properties of LiCo0.94Mg0.06O2 with different sintering temperatures. Further, we characterize and analyze phase composition and microstructure of LiCo0.94Mg0.06O2, which was fabricated using a solid-state reaction. The results show that dielectric properties of LiCo0.94Mg0.06O2 composites can be controlled by shifting sintering temperature. The dielectric properties of LiCo0.94Mg0.06O2 composites are ideal at 900 °C and remain stable with the extension of sintering time. The real and imaginary part of this composite is approximate 16 and 4, respectively. The calculated reflection loss of the LiCo0.94Mg0.06O2 composites exhibited a remarkable microwave absorption performance. The minimum reflection loss value of the LiCo0.94Mg0.06O2 composites is − 50.1 dB at a thickness of 2.1 mm. Consequently, this study opens up new way for absorbent, expands the applications of LiCo0.94Mg0.06O2 into new areas beyond active cathode material, and will probably attract the attention of materials scientist.



This work was supported by National Natural Science Foundation of China (No. 51572220) and the State Key Laboratory of the Solidification Processing in NWPU, China (No. KP201604).


  1. 1.
    Q.C. Liu, Z.F. Zi, M. Zhang, A.B. Pang, J.M. Dai, Y.P. Sun, Enhanced microwave absorption properties of carbonyl iron/Fe3O4 composites synthesized by a simple hydrothermal method. J. Alloys Compd. 561, 65–70 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Baniasadi, A. Ghasemi, A. Nemati, M.A. Ghadikolaei, E. Paimozd, Effect of Ti-Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite. J. Alloys Compd. 583, 325–328 (2014)CrossRefGoogle Scholar
  3. 3.
    Q. Yuchang, W. Qinlong, L. Fa, Z. Wancheng, Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 4, 4853–4862 (2016)CrossRefGoogle Scholar
  4. 4.
    M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Wu, K. Zhou, Z. Yang, X. Qian, J. Wei, L. Liu, Y. Huang, L. Kong, L. Wang, Molten-salt-mediated synthesis of SiC nanowires for microwave absorption applications. CrystEngComm 15, 570–576 (2013)CrossRefGoogle Scholar
  6. 6.
    X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, N.J. Mellors, Fe3O4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range. J. Nanopart. Res. 15, 1472 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.W. Dai, M.Q. Sun, C.G. Liu, Z.Q. Li, Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concr. Compos. 32, 508–513 (2010)CrossRefGoogle Scholar
  8. 8.
    Z.H. Zhu, Y.F. Zhou, P.F. Yan, R.S. Vemuri, W. Xu, R. Zhao, X.L. Wang, S. Thevuthasan, D.R. Baer, C.M. Wang, In situ mass spectrometric determination of molecular structural evolution at the solid electrolyte interphase in lithium-ion batteries. Nano Lett. 15, 6170–6176 (2015)CrossRefGoogle Scholar
  9. 9.
    W.C. Zhou, X.J. Hu, X.X. Bai, S.Y. Zhou, C.H. Sun, J. Yan, P. Chen, Synthesis and electromagnetic, microwave absorbing properties of core-shell Fe3O4-Poly(3, 4-ethylenedioxythiophene) Microspheres. ACS Appl. Mater. Inter. 3, 3839–3845 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixcoO2 (O less-than X less-than-or-equal-to 1)—a new cathode material for batteries of high-energy density. Solid State Ionics 3–4, 171–174 (1981)CrossRefGoogle Scholar
  11. 11.
    R. Alcantara, P. Lavela, J.L. Tirado, R. Stoyanova, E. Zhecheva, Structure and electrochemical properties of boron-doped LiCoO2. J. Solid State Chem. 134, 265–273 (1997)CrossRefGoogle Scholar
  12. 12.
    H. Tukamoto, A.R. West, Electronic conductivity of LiCoO2 and its enhancement by magnesium doping. J. Electrochem. Soc. 144, 3164–3168 (1997)CrossRefGoogle Scholar
  13. 13.
    M. Carewska, S. Scaccia, F. Croce, S. Arumugam, Y. Wang, S. Greenbaum, Electrical conductivity and 6,7Li NMR studies of Li1+yCoO2. Solid State Ionics 93, 227–237 (1997)CrossRefGoogle Scholar
  14. 14.
    M. Yang, W. Zhou, F. Luo, D. Zhu, Dielectric and microwave absorption properties of LiCoO2 and its enhancement by micro-doping with metal ions. J. Mater. Sci. 30(1), 323–331 (2009)Google Scholar
  15. 15.
    M. Yang, X. Wancheng, L. Fa, D. Zhu, Enhanced dielectric and microwave absorption properties of LiCoO2 powders by magnesium doping in the X-band. J. Am. Ceram. Soc. 107, 4048–4055 (2019)CrossRefGoogle Scholar
  16. 16.
    S. Levasseur, M. Menetrier, C. Delmas, On the dual effect of Mg doping in LiCoO2 and Li1+delta CoO2: structural, electronic properties, and Li-7 MAS NMR studies. Chem. Mater. 14, 3584–3590 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Madhavi, G.V.S. Rao, B.V.R. Chowdari, S.F.Y. Li, Synthesis and cathodic properties of LiCo1-yRhyO2 (0<=y<=0.2.) and LiRhO2. J. Electrochem. Soc. 148, A1279–A1286 (2001)CrossRefGoogle Scholar
  18. 18.
    C. Fadley, Basic concepts of X-ray photoelectron spectroscopy. Electron Spectrosc. Theory Techn. Appl. 2, 1–156 (1978)Google Scholar
  19. 19.
    K. Kim, X-ray-photoelectron spectroscopic studies of the electronic structure of CoO. Phys. Rev. B 11, 2177 (1975)CrossRefGoogle Scholar
  20. 20.
    J.-C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRefGoogle Scholar
  21. 21.
    A.T. Appapillai, A.N. Mansour, J. Cho, Y. Shao-Horn, Microstructure of LiCoO2 with and without “AIPO(4)” nanoparticle coating: combined STEM and XPS studies. Chem. Mater. 19, 5748–5757 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Hüfner, Electronic structure of NiO and related 3d-transition-metal compounds. Adv. Phys. 43, 183–356 (1994)CrossRefGoogle Scholar
  23. 23.
    L. Daheron, H. Martinez, R. Dedryvere, I. Baraille, M. Menetrier, C. Denage, C. Delmas, D. Gonbeau, Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations. J. Phys. Chem. C 113, 5843–5852 (2009)CrossRefGoogle Scholar
  24. 24.
    J.C. Dupin, D. Gonbeau, H. Benqlilou-Moudden, P. Vinatier, A. Levasseur, XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 384, 23–32 (2001)CrossRefGoogle Scholar
  25. 25.
    N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F. Cosandey, P. Shah, N. Isaacs, G.G. Amatucci, Stoichiometric, morphological, and electrochemical impact of the phase stability of LixCoO2. J. Electrochem. Soc. 152, A114–A125 (2005)CrossRefGoogle Scholar
  26. 26.
    Y. Qing, W. Zhou, S. Huang, Z. Huang, F. Luo, D. Zhu, Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J. Alloys Compd. 583, 471–475 (2014)CrossRefGoogle Scholar
  27. 27.
    Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. Appl. Phys. A-Mater. 100, 1177–1181 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Zhou, W.C. Zhou, J.B. Su, F. Luo, D.M. Zhu, Y.L. Dong, Plasma sprayed Al2O3/FeCrAl composite coatings for electromagnetic wave absorption application. Appl. Surf. Sci. 258, 2691–2696 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Quan, W. Shi, S.J.H. Ong, X. Lu, P.L. Wang, G. Ji, Y. Guo, L. Zheng, Z.J. Xu, Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. (2019). Google Scholar
  30. 30.
    Y. Liu, F. Luo, J.B. Su, W.C. Zhou, D.M. Zhu, Electromagnetic and microwave absorption properties of the Nickel/Ti3SiC2 hybrid powders in X-band. J. Magn. Magn. Mater. 365, 126–131 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Gao, W.C. Zhou, F. Luo, D.M. Zhu, Z.N. Yang, Microwave dielectric properties of potassium sodium niobate ceramics with different K/Na ratios. Ceram. Int. 42, 19105–19109 (2016)CrossRefGoogle Scholar
  32. 32.
    Q.L. Wen, W.C. Zhou, J.B. Su, Y.C. Qing, F. Luo, D.M. Zhu, Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings. J. Mater. Sci. Mater.El 27, 1783–1790 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.C. Qing, Q.L. Wen, F. Luo, W.C. Zhou, D.M. Zhu, Graphene nanosheets/BaTiO3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J. Mater. Chem. C 4, 371–375 (2016)CrossRefGoogle Scholar
  34. 34.
    D.X. Yan, P.G. Ren, H. Pang, Q. Fu, M.B. Yang, Z.M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22, 18772–18774 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Wen, M.S. Cao, M.M. Lu, W.Q. Cao, H.L. Shi, J. Liu, X.X. Wang, H.B. Jin, X.Y. Fang, W.Z. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations