Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15912–15922 | Cite as

Simultaneously achieved high energy density and excellent thermal stability of lead-free barium titanate-based relaxor ferroelectric under low electric field

  • Xiuli ChenEmail author
  • Xu Li
  • Huanfu Zhou
  • Jie Sun
  • Xiaoxia Li
  • Xiao Yan
  • Congcong Sun
  • Junpeng Shi
  • Feihong Pang
Article
  • 89 Downloads

Abstract

Dielectric capacitors with high power density and excellent temperature stability are highly demanded in pulsed power systems. BaTiO3-based lead-free relaxor ceramics have been proven to be a promising candidate for energy storage applications. However, the presence of low maximum polarization (Pmax) heavily restricts its applications in the energy storage field. In order to significantly increase Pmax under low electric field, a strategy, via introducing Bi0.5Na0.5TiO3 (BNT) and Ca2+, constructing local compositional disorder and decreasing grain size, is propounded in this work. High Pmax of 42.11 µC cm−2 and large breakdown electric field (Eb) of 210 kV cm−1 were attained in Bi0.5Na0.5TiO3-modified BT-based solution, giving rise to ultrahigh Wrec of 2.57 J/cm3. The significantly improved Wrec is much superior to the previous other lead-free dielectric ceramic under moderate electric fields (< 220 kV cm−1). In addition, an excellent temperature stability (the variation of Wrec is less than 3% in the temperature range of 20–120 °C) was obtained in this BNT-modified BT-based bulk materials. These results demonstrate that the strategy is practicable and effective to hike the energy density up for BaTiO3-based bulk ceramics, which may pave a significant step towards utilizing energy storage applications for BaTiO3-based materials.

Notes

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11664008, 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027 and 2017GXNSFFA198011).

References

  1. 1.
    C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28–E62 (2010)CrossRefGoogle Scholar
  2. 2.
    Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Nano. Energy 58, 768–777 (2019)CrossRefGoogle Scholar
  3. 3.
    Z.B. Pan, L.M. Yao, J.W. Zhai, K. Yang, B. Shen, H.T. Wang, ACS. Sustain Chem. Eng. 5, 4707–4717 (2017)CrossRefGoogle Scholar
  4. 4.
    F. Li, T. Jiang, J.W. Zhai, B. Shen, H.R. Zeng, J. Mater. Chem. C. 6, 7976–7981 (2018)CrossRefGoogle Scholar
  5. 5.
    Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Xie, H.B. Zhang, Q. Zhang, J.D. Zang, C. Yang, Q.P. Wang, M.Y. Li, S.L. Jiang, J. Mater. Chem. A. 5, 6070–6078 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Nano Energy 50, 723–732 (2018)CrossRefGoogle Scholar
  8. 8.
    B. Xu, J. Iniguez, L. Bellaiche, Nat. Commun. 8, 15682 (2017)CrossRefGoogle Scholar
  9. 9.
    D.W. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q.L. Zhao, X.L. Tan, I.M. Reaney, J. Mater. Chem. A. 6, 4133–4144 (2018)CrossRefGoogle Scholar
  10. 10.
    B. Xie, Q. Zhang, L. Zhang, Y.W. Zhu, X. Guo, P.Y. Fan, H.B. Zhang, Nano. Energy. 54, 437–446 (2018)CrossRefGoogle Scholar
  11. 11.
    C.W. Tao, X.Y. Geng, J. Zhang, R.X. Wang, Z.B. Gu, S.T. Zhang, J. Eur. Ceram. Soc. 38, 4946–4952 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Materials 8, 8009–8031 (2015)CrossRefGoogle Scholar
  13. 13.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334–6365 (2013)CrossRefGoogle Scholar
  14. 14.
    C. Wang, F. Yan, H. Yang, Y. Lin, T. Wang, J. Alloys. Compd. 749, 605–611 (2018)CrossRefGoogle Scholar
  15. 15.
    F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Mater. Res. Lett. 7, 345–352 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, Q. Li, Ceram. Int. 44, 10968–10974 (2018)CrossRefGoogle Scholar
  17. 17.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995–4001 (2016)CrossRefGoogle Scholar
  18. 18.
    C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, Y.F. Cui, J. Alloys. Compd. 711, 319–326 (2017)CrossRefGoogle Scholar
  19. 19.
    J. Yin, Y. Zhang, X. Lv, J. Wu, J. Mater. Chem. A 6, 9823–9832 (2018)CrossRefGoogle Scholar
  20. 20.
    X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Appl. Phys. Lett. 102, 163903 (2013)CrossRefGoogle Scholar
  21. 21.
    M. Sharifzadeh Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97, 142902 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.F. Li, J. Mater. Chem. A 7, 2225–2232 (2019)CrossRefGoogle Scholar
  23. 23.
    N. Luo, K. Han, F. Zhuo, L. Liu, X. Chen, B. Peng, X. Wang, Q. Feng, Y. Wei, J. Mater. Chem. C. 7, 4999–5008 (2019)CrossRefGoogle Scholar
  24. 24.
    Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, J. Mater. Chem. A. 5, 17525–17531 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.-G. Ye, H. Zhang, J. Mater. Chem. C. 7, 281–288 (2019)CrossRefGoogle Scholar
  26. 26.
    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, J. Am. Ceram. Soc. 98, 559–566 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C. 6, 8528–8537 (2018)CrossRefGoogle Scholar
  28. 28.
    W.-B. Li, D. Zhou, L.-X. Pang, R. Xu, H.-H. Guo, J. Mater. Chem. A. 5, 19607–19612 (2017)CrossRefGoogle Scholar
  29. 29.
    Z.T. Yang, H.L. Du, S.B. Qu, Y.D. Hou, H. Ma, J.F. Wang, J. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A. 4, 13778–13785 (2016)CrossRefGoogle Scholar
  30. 30.
    C. Neusel, G.A. Schneider, J. Mech. Phys. Solids 63, 201–213 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767–1769 (1996)CrossRefGoogle Scholar
  32. 32.
    Z.H. Chen, Z.W. Li, J.N. Ding, J.J. Xu, J.H. Qiu, Y. Yang, J. Alloys Compd. 704, 141–145 (2017)CrossRefGoogle Scholar
  33. 33.
    Z.H. Chen, Z.W. Li, M.G. Ma, J.H. Qiu, T.X. Zhao, J.N. Ding, X.G. Jia, K.Q. Zhu, Mater. Res. Bull. 105, 330–333 (2018)CrossRefGoogle Scholar
  34. 34.
    Z.H. Chen, Z.W. Li, J.N. Ding, T.X. Zhao, J.H. Qiu, K.Q. Zhu, J.J. Xu, B. Zhang, J. Electron. Mater. 47, 3409–3413 (2018)CrossRefGoogle Scholar
  35. 35.
    Z. Sun, L. Li, S. Yu, X. Kang, S. Chen, Dalton. T. 46, 14341–14347 (2017)CrossRefGoogle Scholar
  36. 36.
    Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, J. Mater. Chem. C. 5, 9552–9558 (2017)CrossRefGoogle Scholar
  37. 37.
    T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A. 5, 554–563 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Sun, X.L. Chen, X. Li, X. Yan, X.X. Li, H.F. Zhou, X.B. Liu, H. Ruan, J. Mater. Sci. 20, 695–700 (2019)Google Scholar
  39. 39.
    G.S. Rohrer, Ionic radii for halides and chalcogenides, pp. 521–525 (2001)Google Scholar
  40. 40.
    Y.P. Pu, M.T. Yao, H.R. Liu, T. Fromling, J. Eur. Ceram. Soc. 36, 2461–2468 (2016)CrossRefGoogle Scholar
  41. 41.
    S.N. Tripathy, K.K. Mishra, S. Sen, D.K. Pradhan, J. Am. Ceram. Soc. 97, 1846–1854 (2014)CrossRefGoogle Scholar
  42. 42.
    Q. Li, J. Wang, Y. Ma, L.T. Ma, G.Z. Dong, H.Q. Fan, J. Alloys. Compd. 663, 701–707 (2016)CrossRefGoogle Scholar
  43. 43.
    B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, S. Panigrahi, E. Longo, N.C. Batista, Appl. Phys. A 109, 715–723 (2012)CrossRefGoogle Scholar
  44. 44.
    L. Zhang, Y. Pu, M. Chen, J. Alloys Compd. 775, 342–347 (2019)CrossRefGoogle Scholar
  45. 45.
    B.Y. Qu, H.L. Du, Z.T. Yang, Q.H. Liu, J. Am. Ceram. Soc. 100, 1517–1526 (2017)CrossRefGoogle Scholar
  46. 46.
    M.Y. Liu, H. Hao, Y.C. Zhen, T. Wang, D.D. Zhou, H.X. Liu, M.H. Cao, Z.H. Yao, J. Eur. Ceram. Soc. 35, 2303–2311 (2015)CrossRefGoogle Scholar
  47. 47.
    A. Zeb, S.J. Miline, J. Eur. Ceram. Soc. 34, 3159–3166 (2014)CrossRefGoogle Scholar
  48. 48.
    D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, F. Fang, Ceram. Int. 41, 7157–7161 (2015)CrossRefGoogle Scholar
  49. 49.
    H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.L. Wang, L.N. Guo, W.D. Tai, H. Wei, J. Eur. Ceram. Soc. 37, 3303–3311 (2017)CrossRefGoogle Scholar
  50. 50.
    D.C. Luan, S.H. Ding, T. Chen, T.X. Song, Ferroelectrics 385, 6169–6176 (2009)CrossRefGoogle Scholar
  51. 51.
    H.L. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, J. Appl. Phys. 105, 124104 (2009)CrossRefGoogle Scholar
  52. 52.
    Q. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y. Wang, R. Ma, S.B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Nano. Energy 52, 203–210 (2018)CrossRefGoogle Scholar
  53. 53.
    Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, J. Alloys. Compd. 775, 116–123 (2019)CrossRefGoogle Scholar
  54. 54.
    Q. Chai, D. Yang, X. Zhao, X. Chao, Z. Yang, J. Am. Ceram. Soc. 101, 2321–2329 (2018)CrossRefGoogle Scholar
  55. 55.
    B.Y. Qu, H.L. Du, Z.T. Yang, J. Mater. Chem. C. 4, 1795–1803 (2016)CrossRefGoogle Scholar
  56. 56.
    D. Zheng, R. Zuo, D. Zhang, Y. Li, X. Tan, J. Am. Ceram. Soc. 98, 2692–2695 (2015)CrossRefGoogle Scholar
  57. 57.
    X.L. Gao, Y. Li, J.W. Chen, C. Yuan, M. Zeng, A.H. Zhang, X.S. Gao, X.B. Lu, Q.L. Li, J.M. Liu, J. Eur. Ceram. Soc. 39, 2331–2338 (2019)CrossRefGoogle Scholar
  58. 58.
    D.Z.R. Zuo, J. Eur. Ceram. Soc. 37, 413–418 (2017)CrossRefGoogle Scholar
  59. 59.
    H. Tao, J.G. Wu, J. Mater. Sci. 28, 16199–16204 (2017)Google Scholar
  60. 60.
    J. Yin, X. Lv, J.G. Wu, Ceram. Int. 43, 13541–13546 (2017)CrossRefGoogle Scholar
  61. 61.
    Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146–18153 (2015)CrossRefGoogle Scholar
  62. 62.
    Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, J. Alloys. Compd. 640, 416–420 (2015)CrossRefGoogle Scholar
  63. 63.
    F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, J. Eur. Ceram. Soc. 38, 4646–4652 (2018)CrossRefGoogle Scholar
  64. 64.
    M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Ceram. Int. 43, 9593–9599 (2017)CrossRefGoogle Scholar
  65. 65.
    X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 43, 9060–9066 (2017)CrossRefGoogle Scholar
  66. 66.
    M. Zhou, R. Liang, Z. Zhou, X. Dong, Ceram. Int. 45, 3582–3590 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiuli Chen
    • 1
    Email author
  • Xu Li
    • 1
  • Huanfu Zhou
    • 1
  • Jie Sun
    • 1
  • Xiaoxia Li
    • 1
  • Xiao Yan
    • 1
  • Congcong Sun
    • 1
  • Junpeng Shi
    • 1
  • Feihong Pang
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations