Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15897–15911 | Cite as

Au-induced improvements in the grain stability and mechanical properties of Ag-based alloy wires under electrical current stressing

  • Bing-Hau Kuo
  • Du-Cheng Tsai
  • Yen-Lin Huang
  • Po-Chun Hsu
  • Tung-Han Chuang
  • Jun-Der Lee
  • Hsing-Hua Tsai
  • Fuh-Sheng ShieuEmail author


The evolutions of the surface morphologies, cross-sectional microstructures, and mechanical properties of two types of Ag-based alloy wires with different Au contents under a 105 A/cm2 electrical current density across various times were compared in this study. Ag-based alloy wires that contain 8 wt% Au and 15 wt% Au with 3 wt% Pd were produced via rapid drawing and multiple annealing processes to replace commercial Au-bonded wires in the electronic packaging industry. The surface morphologies of these wires were revealed by scanning electron microscopy (SEM), and cross-sectional microstructures were analyzed by electron back scattering diffraction (EBSD). The SEM observations showed grain- and step-like structures in the Ag–8Au–3Pd and Ag–15Au–3Pd wires after a 5-h treatment, respectively. EBSD results revealed a change in the main preferred orientation from <001> slender grains to <111> equiaxed grains because the high-angle grain boundaries (HAGB) were reduced, and the twin boundaries (TB) were multiplied along the drawing direction. In terms of mechanical properties, Ag–15Au–3Pd wire showed better breaking loads and elongations than Ag–8Au–3Pd wire. The Au effect in Ag-based alloy wires reduced the atomic diffusion to stabilize grain structures and induce a dislocation accumulation, which subsequently improved the mechanical properties by retaining and forming HAGBs, LAGBs, and TBs under high current stressing.



The authors gratefully acknowledge the financial support for this research by the Ministry of Science and Technology of Taiwan under Grant No. NSC 106-2221-E-005-026-MY3. The present work was also supported in part by the Center for Micro/Nano Science and Technology of the National Cheng Kung University and Innovation and Development Center of Sustainable Agriculture (IDCSA).


  1. 1.
    P.B. Ghate, Electromigration-induced failures in VLSI interconnects. IEEE Int. Reliab. Phys. Symp. Proc. 20, 292–299 (1982)CrossRefGoogle Scholar
  2. 2.
    J.R. Black, Electromigration failure modes in aluminum metallization for semiconductor devices. Proc. IEEE 57, 1587–1594 (1969)CrossRefGoogle Scholar
  3. 3.
    H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20, 76–87 (1961)CrossRefGoogle Scholar
  4. 4.
    J.A. Nucci, A. Straub, E. Bischoff, E. Arzt, C.A. Volkert, Growth of electromigration-induced hillocks in Al interconnects. J. Mater. Res. 17, 2727–2735 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Marieb, P. Flinn, J.C. Bravman, D. Gardner, M. Madden, Observations of electromigration induced void nucleation and growth in polycrystalline and near-bamboo passivated Al lines. J. Appl. Phys. 78, 1026–1032 (1995)CrossRefGoogle Scholar
  6. 6.
    R. Spolenak, O. Kraft, E. Arzt, Effects of alloying elements on electromigration. Microelectron. Reliab. 38, 1015–1020 (1998)CrossRefGoogle Scholar
  7. 7.
    F. d’Heurle, The effect of copper additions on electromigration in aluminum thin films. Metall. Trans. 2, 683–689 (1971)CrossRefGoogle Scholar
  8. 8.
    T.H. Chuang, H.J. Lin, C.H. Chuang, Y.Y. Shiue, F.S. Shieu, Y.L. Huang, P.C. Hsu, J.D. Lee, H.H. Tsai, Thermal stability of grain structure and material properties in an annealing twinned Ag–4Pd alloy wire. J. Alloys Compd. 615, 891–898 (2014)CrossRefGoogle Scholar
  9. 9.
    T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire. Scr. Mater. 67, 605–608 (2012)CrossRefGoogle Scholar
  10. 10.
    R. Guo, L. Gao, M. Li, D. Mao, K. Qian, H. Chiu, Microstructure evolution of Ag–8Au–3Pd alloy wire during electromigration. Mater. Charact. 110, 44–51 (2015)CrossRefGoogle Scholar
  11. 11.
    K.C. Chen, C.N. Liao, W.W. Wu, L.J. Chen, Direct observation of electromigration-induced surface atomic steps in Cu lines by in situ transmission electron microscopy. Appl. Phys. Lett. 90, 203101 (2007)CrossRefGoogle Scholar
  12. 12.
    L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)CrossRefGoogle Scholar
  13. 13.
    J.D. Lee, H.H. Tsai, T.H. Chuang, Patent US8940403B2 (2012)Google Scholar
  14. 14.
    S.P. Riege, J.A. Prybyla, A.W. Hunt, Influence of microstructure on electromigration dynamics in submicron Al interconnects: real-time imaging. Appl. Phys. Lett. 69, 2367–2369 (1996)CrossRefGoogle Scholar
  15. 15.
    J.R. Bowen, P.B. Prangnell, D.J. Jensen, N. Hansen, Microstructural parameters and flow stress in Al–0 13% Mg deformed by ECAE processing. Mater. Sci. Eng. A 387–389, 235–239 (2004)CrossRefGoogle Scholar
  16. 16.
    J.P. Hou, Q. Wang, H.J. Yang, X.M. Wu, C.H. Li, X.W. Li, Z.F. Zhang, Microstructure evolution and strengthening mechanisms of cold-drawn commercially pure aluminum wire. Mater. Sci. Eng. A 639, 103–106 (2015)CrossRefGoogle Scholar
  17. 17.
    X.M. Luo, Z.M. Song, M.L. Li, Q. Wang, G.P. Zhang, Microstructural evolution and service performance of cold-drawn pure aluminum conductor wires. J. Mater. Sci. Technol. 33, 1039–1043 (2017)CrossRefGoogle Scholar
  18. 18.
    J.A. Venables, The nucleation and propagation of deformation twins. J. Phys. Chem. Solids 25, 693–700 (1964)CrossRefGoogle Scholar
  19. 19.
    J.W. Park, H.J. Jeong, S.W. Jin, M.J. Kim, K. Lee, J.J. Kim, S.T. Hong, H.N. Han, Effect of electric current on recrystallization kinetics in interstitial free steel and AZ31 magnesium alloy. Mater. Charact. 133, 70–76 (2017)CrossRefGoogle Scholar
  20. 20.
    P.C. Liang, K.L. Lin, Non-deformation recrystallization of metal with electric current stressing. J. Alloys Compd. 722, 690–697 (2017)CrossRefGoogle Scholar
  21. 21.
    V. Randle, H. Davies, I. Cross, Grain boundary misorientation distributions. Curr. Opin. Solid State Mater. Sci. 5, 3–8 (2001)CrossRefGoogle Scholar
  22. 22.
    T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, E.J. Lavernia, Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scr. Mater. 78–79, 25–28 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Ranganathan, On the geometry of coincidence-site lattices. Acta Crystallogr. 21, 197–199 (1966)CrossRefGoogle Scholar
  24. 24.
    S. Kobayashi, R. Kobayashi, T. Watanabe, Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 102, 397–405 (2016)CrossRefGoogle Scholar
  25. 25.
    V. Randle, Twinning-related grain boundary engineering. Acta Mater. 52, 4067–4081 (2004)CrossRefGoogle Scholar
  26. 26.
    G. Palumbo, K.T. Aust, U. Erb, P.J. King, A.M. Brennenstuhl, P. Lichtenberger, On annealing twins and CSL distributions in fcc polycrystals. Phys. Status Solidi A 131, 425–428 (1992)CrossRefGoogle Scholar
  27. 27.
    V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187–4196 (1999)CrossRefGoogle Scholar
  28. 28.
    K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321(5892), 1066–1069 (2008)CrossRefGoogle Scholar
  29. 29.
    K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 69, 68–77 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586–1601 (2009)CrossRefGoogle Scholar
  31. 31.
    B.C. Kim, S. Lee, N.J. Kim, D.Y. Lee, Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds. Metall. Trans. A 22, 139–149 (1991)CrossRefGoogle Scholar
  32. 32.
    T.H. Chuang, H.J. Lin, C.H. Chuang, C.H. Tsai, J.D. Lee, H.H. Tsai, Durability to electromigration of an annealing-twinned Ag-4Pd alloy wire under current stressing. Metall. Mater. Trans. A 45, 5574–5583 (2014)CrossRefGoogle Scholar
  33. 33.
    N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57, 4198–4208 (2009)CrossRefGoogle Scholar
  34. 34.
    N. Hansen, Hall-Petch relation and boundary strengthening. Scr. Mater. 51, 801–806 (2004)CrossRefGoogle Scholar
  35. 35.
    M. Dao, L. Lu, Y.F. Shen, S. Suresh, Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54, 5421–5432 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bing-Hau Kuo
    • 1
  • Du-Cheng Tsai
    • 1
  • Yen-Lin Huang
    • 1
  • Po-Chun Hsu
    • 2
  • Tung-Han Chuang
    • 3
  • Jun-Der Lee
    • 4
  • Hsing-Hua Tsai
    • 4
  • Fuh-Sheng Shieu
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  3. 3.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  4. 4.Wire Technology Co. LtdTaichungTaiwan

Personalised recommendations