Advertisement

Electrodeposition of copper-doped SnS thin films and their electric transmission properties control for thermoelectric enhancement

  • Ying Liu
  • Kai Cao
  • Jingjun Liu
  • Zhengping Zhang
  • Jing Ji
  • Feng WangEmail author
  • Zhilin LiEmail author
Article
  • 36 Downloads

Abstract

The thermoelectric performances of SnS are gradually noticed because of its structure similarity to SnSe which has the highest known thermoelectric performance. But the low electric transmission properties of SnS confines its thermoelectric performances. In this paper, we prepared Cu-doped SnS thin films with electrodeposition method. The Cu-doping content of the thin films were controlled by the adjustment of the electrolyte composition. The Cu doping narrowed the band gap of the SnS thin films, so that it promoted the carrier concentration of the films. The largest carrier concentration increased from 4.26 × 1015 to 436.42 × 1015 cm−3 after the Cu doping. By the additives in the electrolyte, the texture orientation and its coefficient were successfully controlled. The texture of (040) and (200) were obtained by the addition of urea and CTAB, respectively. The carrier mobility of the Cu-doped SnS thin films increased from 0.63 to 1.94 cm2/V s by the (200) texture. With a sample electrodeposition method, we successfully accomplished the combination of the Cu-doping and texture control of SnS thin films. Such a combination decreased the resistivity of the Cu-doped thin film with (200) texture from 322.53 to 24.50 Ω cm, so it was an effective path to improve the electric transmission performance of SnS thin films. Our results provide an easy method and a new view to improve the electric transmission performance of thermoelectric thin films.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51472020).

References

  1. 1.
    C. Gao, G. Chen, Compos. Sci. Technol. 124, 52–70 (2016)CrossRefGoogle Scholar
  2. 2.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 7496 (2014)CrossRefGoogle Scholar
  3. 3.
    L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, Science 351, 141–144 (2017)CrossRefGoogle Scholar
  4. 4.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 5 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Kumagai, L.A. Burton, A. Walsh, F. Oba, Phys. Rev. Appl. 6, 1 (2016)CrossRefGoogle Scholar
  6. 6.
    R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B 92, 115 (2015)Google Scholar
  7. 7.
    T.M. Tritt, Science 283, 5403 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uher, D.J. Singh, NPJ Comput. Mater. 2, 1 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Gotoh, Phys. Status Solidi A 213, 7 (2016)CrossRefGoogle Scholar
  10. 10.
    B.Z. Sun, Z. Ma, C. He, K. Wu, RSC Adv. 5, 69 (2015)Google Scholar
  11. 11.
    Q. Tan, C.F. Wu, W. Sun, J.F. Li, RSC Adv. 6, 50 (2016)Google Scholar
  12. 12.
    H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 4 (2015)Google Scholar
  13. 13.
    D.M. Unuchak, K. Bente, V.A. Ivanov, V.F. Gremenok, Cryst. Res. Technol. 45, 11 (2010)CrossRefGoogle Scholar
  14. 14.
    N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, A. Dhar, J. Alloys Comp. 668, 152–158 (2016)CrossRefGoogle Scholar
  15. 15.
    E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4, 5 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Goto, F. Naito, R. Sato, K. Yoshiyasu, T. Itoh, Y. Kamihara, M. Matoba, Inorg. Chem. 52, 17 (2013)CrossRefGoogle Scholar
  17. 17.
    V. Steinmann, R.E. Brandt, R. Chakraborty, R. Jaramillo, M. Young, B.K. Ofori-Okai, C. Yang, A. Polizzotti, K.A. Nelson, R.G. Gordon, T. Buonassisi, APL Mater. 4, 2 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Abdullah Almessiere, A.L. Al-Otaibi, I.B. Assaker, T. Ghrib, R. Chtourou, Mater. Sci. Semicond. Process. 40, 873–878 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Yang, S. Cheng, J. Semicond. 29, 12 (2008)Google Scholar
  20. 20.
    O. Falkenbach, J. Tinz, A.S. Schulze, E. Mueller, S. Schlecht, Phys. Status Solidi A 213, 3 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Bera, S. Jacob, I. Opahle, N.S. Gunda, R. Chmielowski, G. Dennler, G.K. Madsen, Phys. Chem. Chem. Phys. 16, 37 (2014)Google Scholar
  22. 22.
    S. Bhattacharya, N.S. Gunda, R. Stern, S. Jacobs, R. Chmielowski, G. Dennler, G.K. Madsen, Phys. Chem. Chem. Phys. 17, 14 (2015)Google Scholar
  23. 23.
    M. Patel, A. Ray, RSC Adv. 4, 74 (2014)Google Scholar
  24. 24.
    J. Xia, X.Z. Li, X. Huang, N. Mao, D.D. Zhu, L. Wang, H. Xu, X.M. Meng, Nanoscale 8, 4 (2016)Google Scholar
  25. 25.
    H. Zhang, Y. Balaji, A. Nalin Mehta, M. Heyns, M. Caymax, I. Radu, W. Vandervorst, A. Delabie, J. Mater. Chem. C 6(23), 6172–6178 (2018)CrossRefGoogle Scholar
  26. 26.
    J. Sun, Y. Huang, S. Nie, Z. Chen, J. Xu, L. Zhao, W. Zhou, Q. Wang, H. Gong, Mater. Lett. 178, 171–174 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Kawano, J. Chantana, T. Minemoto, Curr. Appl. Phys. 15, 8 (2015)CrossRefGoogle Scholar
  28. 28.
    B. Ghosh, R. Roy, S. Chowdhury, P. Banerjee, S. Das, Appl. Surf. Sci. 256, 13 (2010)CrossRefGoogle Scholar
  29. 29.
    A. Kassim, H.S. Min, W.T. Tan, M.J. Haron, J. Appl. Sci. Res. 4, 12 (2008)Google Scholar
  30. 30.
    Y. Liu, D. Hou, G. Wang, Chem. Phys. Lett. 379, 1–2 (2003)CrossRefGoogle Scholar
  31. 31.
    P.K.D. Gupta, S.P. Moulik, Colloid Polym. Sci. 267, 3 (1989)Google Scholar
  32. 32.
    Z. Tian, C. Guo, M. Zhao, R. Li, J. Xue, ACS Nano 11, 11368–11375 (2017)CrossRefGoogle Scholar
  33. 33.
    A. Shafique, Y.H. Shin, Sci. Rep. 7, 1 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Kafashan, F. Jamali-Sheini, R. Ebrahimi-Kahrizsangi, R. Yousefi, J. Alloys Comp. 681, 595–605 (2016)CrossRefGoogle Scholar
  35. 35.
    A.A. Ramadan, A.A. Abd El-Mongy, A.M. El-Shabiny, A.T. Mater, S.H. Mostafa, E.A. El-Sheheedy, H.M. Hashem, Cryst. Res. Technol. 44, 111 (2009)CrossRefGoogle Scholar
  36. 36.
    S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Shevtsova, P.P. Gladyshev, Thin Solid Films 585, 40–44 (2015)CrossRefGoogle Scholar
  37. 37.
    B. Ghosh, M. Das, P. Banerjee, S. Das, Solid State Sci. 11, 2 (2009)Google Scholar
  38. 38.
    P.D. Antunez, D.A. Torelli, F. Yang, F.A. Rabuffetti, N.S. Lewis, R.L. Brutchey, Chem. Mater. 26, 19 (2014)CrossRefGoogle Scholar
  39. 39.
    J. Xu, Y. Yang, Z. Xie, J. Mater. Sci.: Mater. Electron. 25, 7 (2014)Google Scholar
  40. 40.
    G.G. Ninan, C. Sudha Kartha, K.P. Vijayakumar, Sol. Energy Mater. Sol. Cells 157(229), 233 (2016)Google Scholar
  41. 41.
    N.R. Mathews, J. Tamy Benítez, F. Paraguay-Delgado, M. Pal, L. Huerta, J. Mater. Sci.: Mater. Electron. 24, 10 (2013)Google Scholar
  42. 42.
    S. Nakamura, H. Funabiki, S. Shiga, Phys. Status Solidi C 14, 6 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for MaterialsBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations