Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15869–15879 | Cite as

Tuning the defects and luminescence of ZnO:(Er, Sm) nanoflakes for application in organic wastewater treatment

  • Zhe Zhang
  • Yuxin Song
  • Si Wu
  • Jiale Guo
  • Qi Zhang
  • Jingshu Wang
  • Jinghai Yang
  • Zhong HuaEmail author
  • Jihui LangEmail author


A series of ZnO nanoflakes modified with rare earth ions of Er and Sm were prepared by a simple chemical solution deposition approach. It was found that the doping content of rare-earth ions was dominant for the defects in the nanoflakes and the ability of photocatalytic degradation for rhodamine B (RhB). The ZnO:(Er, Sm) nanoflakes exhibited a superior photocatalytic activity compared to undoped ZnO mainly due to the longer lifetime of photogenerated electrons-hole pairs in the process of photocatalytic reaction, and Zn0.98Sm0.01Er0.01O nanoflakes could degrade 96.5% RhB within 60 min under UV light irradiation. PL results provided a strong evidence for the existence of VO defect, which was also found to be responsive for the enhanced photocatalytic activity of ZnO:(Er, Sm) nanoflakes. And the peaks at 515 nm and 550 nm could be attributed to the transitions of \(^{2} H_{11/2} \to^{4} I_{15/2}\) and \(^{4} S_{3/2} \to^{4} I_{15/2}\) from Er3+ ions, indicating the realization of green luminescence.



This work is supported by the National Natural Science Foundation of China (Grant Nos. 51608226, 21776110, 21878119), Program for the development of Science and Technology of Jilin Province (Item No. 20180101202JC).


  1. 1.
    M. Meksi, A. Turki, H. Kochkar, L. Bousselmi, C. Guillard, G. Berhault, The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B 181, 651–660 (2016)CrossRefGoogle Scholar
  2. 2.
    P. Calza, C. Gionco, M. Giletta, M. Kalaboka, V.A. Sakkas, T. Albanis, M.C. Paganini, Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst. J. Hazard. Mater. 323, 471–477 (2017)CrossRefGoogle Scholar
  3. 3.
    A.T. Dal’Toé, G.L. Colpani, N. Padoin, M.A. Fiori, C. Soares, Lanthanum doped titania decorated with silver plasmonic nanoparticles with enhanced photocatalytic activity under UV-visible light. Appl. Surf. Sci. 441, 1057–1071 (2018)CrossRefGoogle Scholar
  4. 4.
    B. Poornaprakash, U. Chalapathi, Y. Suh, S.P. Vattikuti, M.S.P. Reddy, S.H. Park, Terbium-doped ZnS quantum dots: structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceram. Int. 44(10), 11724–11729 (2018)CrossRefGoogle Scholar
  5. 5.
    M. Faisal, A.A. Ismail, A.A. Ibrahim, H. Bouzid, S.A. Al-Sayari, Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity. Chem. Eng. J. 229, 225–233 (2013)CrossRefGoogle Scholar
  6. 6.
    U. Alam, A. Khan, D. Ali, D. Bahnemann, M. Muneer, Comparative photocatalytic activity of sol-gel derived rare earth metal (La, Nd, Sm and Dy)-doped ZnO photocatalysts for degradation of dyes. RSC Adv. 8, 17582–17594 (2018)CrossRefGoogle Scholar
  7. 7.
    J.R. Li, Z. Zhang, J.H. Lang, J.Y. Wang, Q. Zhang, J.S. Wang, Q. Han, J.H. Yang, Tuning red emission and photocatalytic properties of highly active ZnO nanosheets by Eu addition. J. Lumin. 204, 573–580 (2018)CrossRefGoogle Scholar
  8. 8.
    A. Mclaren, T. Valdes-Solis, G.Q. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Ramirez-Canon, M. Medina-Llamas, M. Vezzoli, D. Matti, Multiscale design of ZnO nanostructured photocatalysts. Phys. Chem. Chem. Phys. 20, 6648–6656 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Liu, Z.Y. Hu, Y. Peng, H.W. Huang, Y. Li, M. Wu, X.X. Ke, G.V. Tendeloo, B.L. Su, 2D ZnO mesoporous single-crystal nanosheets with exposed 0001 polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B 181, 138–145 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Faraz, F.K. Naqvi, M. Shakir, N. Khare, Synthesis of samarium-doped zinc oxide nanoparticles with improved photocatalytic performance and recyclability under visible light irradiation. New J. Chem. 42(3), 2295–2305 (2018)CrossRefGoogle Scholar
  12. 12.
    A.N. Ökte, Characterization and photocatalytic activity of Ln (La, Eu, Gd, Dy and Ho) loaded ZnO nanocatalysts. Appl. Catal. A 475, 27–39 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Lang, Q. Han, J. Yang, C. Li, X. Li, L. Yang, Y. Zhang, M. Gao, D. Wang, J. Cao, Fabrication and optical properties of Ce-doped ZnO nanorods. J. Appl. Phys. 107(7), 074302 (2010)CrossRefGoogle Scholar
  14. 14.
    M. Gao, C. Yan, B.Z. Li, L.J. Zhou, J.C. Yao, Y.J. Zhang, H.L. Liu, L.H. Cao, Y.T. Cao, J.H. Yang, Y.X. Wang, Strong red emission and catalytic properties of ZnO by adding Eu2O3 shell. J. Alloy. Compd. 724C, 537–542 (2017)CrossRefGoogle Scholar
  15. 15.
    A.S. Vig, A. Gupta, O.P. Pandey, Efficient photodegradation of methylene blue (MB) under solar radiation by ZrC nanoparticles. Adv. Powder Technol. 29(9), 2231–2242 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Zarrabi, M. Haghighi, R. Alizadeh, S. Mahboob, Solar-light-friven photodegradation of organic dyes on sono-dispersed ZnO nanoparticles over graphene oxide: sono versus conventional catalyst design. Sep. Purif. Technol. 211, 738–752 (2019)CrossRefGoogle Scholar
  17. 17.
    R.K. Kalaiezhily, G. Saravanan, V. Asvini, N. Vijayan, K. Ravichandran, Tuning violet to green emission in luminomagnetic Dy, Er co-doped ZnO nanoparticles. Ceram. Int. 44, 19560–19569 (2018)CrossRefGoogle Scholar
  18. 18.
    R. Raji, K.S. Sibi, K.G. Gopchandran, ZnO: Ag nanorods as efficient photocatalysts: sunlight driven photocatalytic degradation of sulforhodamine B. Appl. Surf. Sci. 427, 863–875 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Ocakoglu, S.A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Microwave-assisted hydrothermal synthesis and characterization of ZnO nanorods. Spectrochim. Acta A. 148, 362–368 (2015)CrossRefGoogle Scholar
  20. 20.
    Y.K. Abdel-Monem, Efficient nanophotocatalyt of hydrothermally synthesized Anatase TiO2 nanoparticles from its analogue metal coordinated precursor. J. Mater. Sci. 27(6), 5723–5728 (2016)Google Scholar
  21. 21.
    J.H. Lang, Q. Han, C.S. Li, J.H. Yang, X. Li, L.L. Yang, D.D. Wang, H.J. Zhai, M. Gao, Y.J. Zhang, X.Y. Liu, M.B. Wei, Effect of Mn doping on the microstructures and photoluminescence properties of CBD derived ZnO nanorods. Appl. Surf. Sci. 256, 3365–3368 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Fang, J. Lang, J. Wang, Q. Han, Z. Zhang, Q. Zhang, J. Yang, S.G. Xing, Rare-earth doping engineering in nanostructured ZnO: a new type of eco-friendly photocatalyst with enhanced photocatalytic characteristics. Appl. Phys. A 124(9), 605 (2018)CrossRefGoogle Scholar
  23. 23.
    F.J. Manjon, B. Mari, J. Serrano, A.H. Romero, Silent raman modes in zinc oxide and related nitrides. J. Appl. Phys. 97(5), 053516 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Hansen, J. Truong, T. Xie, J.I. Hahm, Spatially distinct Raman scattering characteristics of individual ZnO nanorods under controlled polarization: intense end scattering from forbidden modes. Nanoscale 9, 8470–8480 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Wang, Q. Li, Z. Liu, J. Zhang, Z. Liu, R. Wang, Low-temperature growth and properties of ZnO nanowires. Appl. Phys. Lett. 84, 4941–4943 (2004)CrossRefGoogle Scholar
  26. 26.
    J.H. Lang, Q. Zhang, Q. Han, Y. Fang, J.Y. Wang, X.Y. Li, Y.Q. Liu, D.D. Wang, J.H. Yang, The study of structural and optical properties of (Eu, La, Sm) codoped ZnO nanoparticles via a chemical route. Mater. Chem. Phys. 194, 29–36 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Lin, J.C. Yu, D. Lo, S.K. Lam, Photocatalytic activity of rutile Ti1−xSnxO2 solid solutions. J. Catal. 183, 368–372 (1999)CrossRefGoogle Scholar
  28. 28.
    J.H. Lang, X. Li, J.H. Yang, L.L. Yang, Y.J. Zhang, Y.S. Yan, Q. Han, M.B. Wei, M. Gao, X.Y. Liu, R. Wang, Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method. Appl. Surf. Sci. 257, 9574–9577 (2011)CrossRefGoogle Scholar
  29. 29.
    J.H. Yang, R. Wang, L.L. Yang, J.H. Lang, M.B. Wei, M. Gao, X.Y. Liu, J. Cao, X. Li, N.N. Yang, Tunable deep-level emission in ZnO nanoparticles via yttrium doping. J. Alloy. Compd. 509, 3606–3612 (2011)CrossRefGoogle Scholar
  30. 30.
    V. Vaiano, M. Matarangolo, J.J. Murcia, H. Rojas, J.A. Navío, M.C. Hidalgo, Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B 225, 197–206 (2018)CrossRefGoogle Scholar
  31. 31.
    X.F. Gao, Y.Q. Wu, T. Zhang, L.Y. Wang, X.L. Li, H.J. Xie, Y.S. Tan, Binary ZnO/Zn–Cr nanospinel catalysts prepared by a hydrothermal method for isobutanol synthesis from syngas. Catal. Sci. Technol. 8, 2975–2986 (2018)CrossRefGoogle Scholar
  32. 32.
    M.A.M. Ahmed, B.S. Mwankemwa, E. Carleschi, B.P. Doyle, W.E. Meyer, J.M. Nel, Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mat. Sci. Semicon. Proc. 79, 53–60 (2018)CrossRefGoogle Scholar
  33. 33.
    G. Zhang, J. Lang, Q. Zhang, Q. Han, X. Li, J. Wang, J. Wang, J. Yang, Defects driven photoluminescence property of Sm-doped ZnO porous nanosheets via a hydrothermal approach. J. Mater. Sci. 29(19), 16534–16542 (2018)Google Scholar
  34. 34.
    J. Sowik, M. Miodyńska, B. Bajorowicz, A. Mikolajczyk, W. Lisowski, T. Klimczuk, D. Kaczor, A.Z. Medynska, A. Malankowska, Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots. Appl. Surf. Sci. 464, 651–663 (2019)CrossRefGoogle Scholar
  35. 35.
    J. Qi, Y.H. Yang, L. Zhang, J.H. Chi, D.Q. Gao, D.S. Xue, Room-temperature ferromagnetism in Er-doped ZnO thin films. Scripta Mater. 60, 289–292 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Wang, P.Y. Kuang, B. Cheng, J.G. Yu, C.J. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. J. Alloy. Compd. 741, 622–632 (2018)CrossRefGoogle Scholar
  37. 37.
    A. Balakrishna, T. K. Pathak, E. Coetsee-Hugo, V. Kumar, R. E. Kroon, O. M. Ntwaeaborwa, H. C. Swart, Synthesis, structure and optical studies of ZnO: Eu3+, Er3+, Yb3+ thin films: enhanced up-conversion emission. Colloid Surf. A 540, 123–135 (2018)CrossRefGoogle Scholar
  38. 38.
    D.H. Hong, G.Z. Cao, X.J. Zhang, J.L. Qu, Y.M. Deng, H.J. Liang, J.N. Tang, Construction of a Pt-modified chestnut-shell-like ZnO photocatalyst for high-efficiency photochemical water splitting. Electrochim. Acta 283, 959–969 (2018)CrossRefGoogle Scholar
  39. 39.
    J.B. Bezerra, R.S. Matos, B. Zucolotto, P.P. Pedra, N. Ferreira, Effects of different complexing agents on the physical properties of ZnO nanoparticles. Mater. Sci. Technol. 35, 231–239 (2019)CrossRefGoogle Scholar
  40. 40.
    R. Beura, R. Pachaiappan, P. Thangadurai, A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation. Appl. Surf. Sci. 433, 887–898 (2018)CrossRefGoogle Scholar
  41. 41.
    P. Kumar, V. Sharma, A. Sarwa, A. Kumar, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokan, D. Kanjilal, Understanding the origin of ferromagnetism in Er doped ZnO system. RSC Adv. 6(92), 89242–89249 (2016)CrossRefGoogle Scholar
  42. 42.
    C. Wang, D. Wu, P.F. Wang, Y.H. Ao, J. Hou, J. Qian, Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays. Appl. Surf. Sci. 325, 112–116 (2015)CrossRefGoogle Scholar
  43. 43.
    J.H. Lang, J.Y. Wang, Q. Zhang, X.Y. Li, Q. Han, M.B. Wei, Y.R. Sui, D.D. Wang, J.H. Yang, Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 42, 14175–14181 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, A. Marimuthu, Nanoflower-like yttrium-doped ZnO photocatalyst for the degradation of methylene blue dye. Photochem. Photobiol. 94(2), 237–246 (2018)CrossRefGoogle Scholar
  45. 45.
    X. Li, B. Wei, J. Wang, X. Li, H. Zhai, J. Yang, Synthesis and comparison of the photocatalytic activities of ZnSe(en)0.5, ZnSe and ZnO nanosheets. J. Alloy. Compd. 689, 287–295 (2016)CrossRefGoogle Scholar
  46. 46.
    L.Y. Xiao, R. Wang, Z.S. Sun, Y.J. Chen, E.M. Zhao, L. Liu, Enhanced red upconversion emission of Er3+-doped ZnO by post-annealing. J. Lumin. 192, 668–674 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Pokhrel, G.A. Kumar, D.K. Sardar, Highly efficient NIR to NIR and VIS upconversion in Er3+ and Yb3+ doped in M2O2S (M = Gd, La, Y). J. Mater. Chem. A 1(38), 11595–11606 (2013)CrossRefGoogle Scholar
  48. 48.
    M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Controlled synthesis of NiO and Co3O4 nanoparticles from different coordinated precursors: impact of precursor’s geometry on the nanoparticles characteristics. Ind. Eng. Chem. Res. 55(50), 12733–12741 (2016)CrossRefGoogle Scholar
  49. 49.
    Y.K. Abdel-Monem, S.M. Emam, H.M. Okda, Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. J. Mater. Sci. 28(3), 2923–2934 (2017)Google Scholar
  50. 50.
    K. Jayanthi, S. Chawla, A.G. Joshi, Z.H. Khan, R.K. Kotnala, Fabrication of luminescent, magnetic hollow core nanospheres and nanotubes of Cr-doped ZnO by inclusive coprecipitation method. J. Phys. Chem. C 114, 18429–18434 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingPeople’s Republic of China
  2. 2.School of ScienceChangchun UniversityChangchunPeople’s Republic of China

Personalised recommendations