Effect of I/Ag molar ratio on silver thick films below 550 °C

  • Hongbo TangEmail author
  • Qiuyue Li
  • Jian Zhou


The effect of low I/Ag ratios on the performance of silver thick films containing micro-sized silver particles treated with surface iodination has been investigated. The film with I/Ag ratio of 1:100 exhibited high electrical conductivity and densification, while that of 2:100 presented better adhesion. The conductivity and densification of the film reached the highest at 550 °C. Optimal conductivity of the film with I/Ag ratio of 1:100 and 2:100 was 11.45 and 15.85 mΩ/sq., respectively. In addition, the film adhesion was enhanced by heating. Different trends observed in electrical conductivity and adhesion as functions of temperature is primarily attributed to shrinkage of modified particles. This work suggested that the I/Ag ratio plays a vital effect on the performance of the silver thick film.



This work is financially supported by Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB216097) and the Foundation of Education Department of Jiangxi Province (Grant Nos. GJJ161035 and GJJ161022). The authors are thankful to Professor Zheng Feng for his advice on writing and Liu Xiaogang for SEM support.


  1. 1.
    H.Y. Wang, S.H. Ma, M.L. Zhang et al., J. Mater. Sci. 28, 11934 (2017)Google Scholar
  2. 2.
    R.X. Li, Y.P. Tai, J.T. Bai et al., J. Mater. Sci. 26, 2471 (2015)Google Scholar
  3. 3.
    S.H. Xiong, X. Yuan, H. Tong et al., Solid State Electron. 142, 1 (2018)CrossRefGoogle Scholar
  4. 4.
    S. Rane, V. Puri, D. Amalnerkar, J. Mater. Sci. 11, 667 (2000)Google Scholar
  5. 5.
    M. Jakubowska, M. Jarosz, K. Kielbasiski et al., Microelectron. Reliab. 51, 1235 (2011)CrossRefGoogle Scholar
  6. 6.
    X. Cai, Y.C. Teng, L. Wu et al., J. Mater. Sci. 28, 18429 (2017)Google Scholar
  7. 7.
    J. Li, X. Li, L. Wang et al., Mater. Des. 140, 64 (2018)CrossRefGoogle Scholar
  8. 8.
    Q.D. Che, H.X. Yang, L. Lu, Y.H. Wan, J. Mater. Sci. 24, 524 (2013)Google Scholar
  9. 9.
    H.C. Lin, P. Lin, C.A. Lu, S.F. Wang, Microelectron. Eng. 86, 2316 (2009)CrossRefGoogle Scholar
  10. 10.
    N.J. Yang, K. Aoki, H. Nagasawa, J. Phys. Chem. B 108, 15027 (2004)CrossRefGoogle Scholar
  11. 11.
    S.H. Park, D.S. Seo, J.K. Lee, Colloids Surf. A 313–314, 197 (2008)CrossRefGoogle Scholar
  12. 12.
    C. Yang, Y.T. Xie, M.F. Yuan et al., Adv. Funct. Mater. 20, 2580 (2010)CrossRefGoogle Scholar
  13. 13.
    H.Y. Wu, S.W. Chiang, W. Han et al., Compos. Sci. Tech. 99, 109 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Zhou, W.P. Gan, Y.F. Li et al., J. Electron. Mater. 43, 3389 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Zhou, H.B. Tang, J. Electron. Mater. 47, 5203 (2018)CrossRefGoogle Scholar
  16. 16.
    N. Chawla, X. Deng, Mater. Sci. Eng. A 390, 98 (2005)CrossRefGoogle Scholar
  17. 17.
    G.Q. Liu, L.X. Ma, J. Liu, Handbook of Chemical and Chemical Physical Property data, 2nd edn. (Chem. Ind. Press, Beijing, 2004), p. 575Google Scholar
  18. 18.
    U. Hasse, K. Wagner, F. Scholz, J. Solid State Electrochem. 8, 842 (2004)CrossRefGoogle Scholar
  19. 19.
    J. Rojek, S. Nosewicz, M. Mazdziarz et al., Procedia Eng. 177, 263 (2017)CrossRefGoogle Scholar
  20. 20.
    E.A. Olevsky, Mater. Sci. Eng. R23, 41 (1998)CrossRefGoogle Scholar
  21. 21.
    C. Buttay, A. Masson, J. Li, et al., Proceedings of The International Conference and Exhibition on High Temperature Electronics Network (HiTEN 2011), Oxford, 84 2011Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Biology EngineeringYichun UniversityYichunPeople’s Republic of China
  2. 2.Key Laboratory of Jiangxi University for Applied Chemistry and Chemical BiologyYichun UniversityYichunPeople’s Republic of China

Personalised recommendations