Electromagnetic properties of Ce substituted barium hexaferrite in X band frequencies

  • İsa ArazEmail author


Ce3+ substituted barium hexaferrite Ba1−xCeXFe12O19 (x = 0.25, 0.5, 0.75) ferrite samples were synthesized by ceramic technique. Besides the simple hexaferrite phase structure, the all three of the as-prepared barium hexaferrites have small amount of CeO2 phases. The phase composition is studied using X-ray diffractometer. The structure morphology is carried out using scanning electron microscopy. The magnetic properties of these ferrites were characterized by employing vibrating sample magnetometer. The complex intrinsic parameters and the electromagnetic properties such as reflection loss (RL), absorption loss (AL), shielding effectiveness (SE) were measured by using transmission/reflection coaxial airline method in the range of 4–16 GHz. The doping of Ce3+ ions has to lead to changes in the phase of the crystal structure to dual phase including barium hexaferrite and cerium oxide. The results present that the obtained composition has a maximum RL value of − 25.7 dB and maximum SE value of 42.3 dB at 10.7 GHz. From these results it was concluded that the synthesized samples had good potential as absorbers in the gigahertz frequency range.



The author would like to acknowledge Gebze Technical University for support vector network analyzer. The author would also like to thanks TUBITAK UME, Magnetic Lab for providing infrastructure.


  1. 1.
    M. Jamalian, A. Ghasemi, M.J. Pourhosseini Asl, Magnetic and microwave properties of barium hexaferrite ceramics doped with Gd and Nd. J. Electron. Mater. 44, 2856 (2015)CrossRefGoogle Scholar
  2. 2.
    S.H. Mahmood, I. Bsoul, Tuning the magnetic properties of M-type hexaferrites.
  3. 3.
    J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959)Google Scholar
  4. 4.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab et al., ZnFe22xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci.: Mater. Electron. 26, 9776 (2015). Google Scholar
  5. 5.
    V.G. Harris, A. Geiler, Y. Chen, S.D. Yoon, M. Wu, A. Yang, Z. Chen, P. He, P.V. Parimi, X. Zuo, Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)CrossRefGoogle Scholar
  6. 6.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016). Google Scholar
  7. 7.
    S.-N. Ali, Z. Abolfazl, R.-N. Mehdi, R.G. Mohammad, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12−xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. (2017). Google Scholar
  8. 8.
    S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, M. Rahimi-Nasrabadi, Assessing the magnetic, cytotoxic and photocatalytic influence of incorporating Yb3+ or Pr3+ ions in cobalt–nickel ferrite. J. Mater. Sci.: Mater. Electron. 04-03-2019, Issue 7/2019Google Scholar
  9. 9.
    D. Lisjak, K. Bobzin, K. Richardt, M. Begard, G. Bolelli, L. Lusvarghi, A. Hujanen, P. Lintunen, M. Pasquale, E. Olivetti, M. Drofenik, T. Schlafer, Preparation of barium hexaferrite coatings using atmospheric plasma spraying. J. Eur. Ceram. Soc. 29, 2333–2341 (2009)CrossRefGoogle Scholar
  10. 10.
    P. Hernandez-Gomez, J.M. Munoz, C. Torres, C. de Francisco, O. Alejos, Influence of stoichiometry on the magnetic dis accommodation in barium M-type hexaferrites. J. Phys. D Appl. Phys. 36, 1062–1070 (2003)CrossRefGoogle Scholar
  11. 11.
    Y. Maswadeh, S.H. Mahmood, A. Awadallah, A.N. Aloqaily, Synthesis and structural characterization of nonstoichiometric barium hexaferrite materials with Fe: Ba ratio of 11.5–16.16, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015, pp. 012019Google Scholar
  12. 12.
    K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, O. Parkash, D. Kumar, Investigation of crystal structure, microstructure and low temperature magnetic behavior of Ce4+ and Zn2+ co-doped barium hexaferrites (BaFe12O19). RSC Adv. 8, 19600 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.-M. Kang, Y.-H. Kwon, M.-H. Kim, D.-Y. Lee, Enhancement of magnetic properties in Mn–Zn substituted M-type Sr-hexaferrites. J. Magn. Magn. Mater. 382, 10–14 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Borisov, J. Alaria, T. Yang, S.R.C. McMitchell, M.J. Rosseinsky, Appl. Phys. Lett. 102, 1–6 (2013)CrossRefGoogle Scholar
  15. 15.
    C. Wu, Z. Yu, K. Sun, J. Nie, R. Guo, H. Liu, X. Jiang, Z. Lan, Sci. Rep. 6, 36200 (2016)CrossRefGoogle Scholar
  16. 16.
    V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav, Phys. B 406, 789–793 (2011)CrossRefGoogle Scholar
  17. 17.
    M.M. Syazwan, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, A.N. Hapishah, Enhancing absorption properties of Mg–Ti substituted barium hexaferrite nanocomposite through the addition of MWCNT. J. Mater. Sci.: Mater. Electron. 28, 8429–8436 (2017). Google Scholar
  18. 18.
    M.M. Syazwan, R.S. Azis, M. Hashim, I. Ismail, S. Kanagesan, A.N. Hapishah, Co–Ti- and Mn–Tisubstituted barium ferrite for electromagnetic property tuning and enhanced microwave absorption synthesized via mechanical alloying. J. Aust. Ceram. Soc. 53, 465–474 (2017). CrossRefGoogle Scholar
  19. 19.
    A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeˇs, K. Siemensmeyer, B. Klemke, H. Nakotte, Magnetic study of M-type doped barium hexaferrite nanocrystalline particles. J. Appl. Phys. 114, 243910 (2013). CrossRefGoogle Scholar
  20. 20.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hex ferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)CrossRefGoogle Scholar
  21. 21.
    R.A. Pawar, S.S. Desai, Q.Y. Tamboli, S.E. Shirsath, S.M. Patange, J. Magn. Magn. Mater. 378, 59–63 (2015)CrossRefGoogle Scholar
  22. 22.
    I. Araz, The measurement of shielding effectiveness for small-in-size-ferrite-based at materials. Turk. J. Electron. Eng. Comput. Sci. (2018). Google Scholar
  23. 23.
    K.J. Strnat, Modern permanent magnets for applications in electro-technology. Proc. IEEE 78, 923–946 (1990)CrossRefGoogle Scholar
  24. 24.
    İ. Araz, F. Genç, Development of broadband microwave absorber and measurement of its magnetic and microwave properties. J. Supercond. Nov. Magn. 31, 279–283 (2018). CrossRefGoogle Scholar
  25. 25.
    Z. Vakil, Effect of Cerium (Ce3+) doping on structural, magnetic and dielectric properties of Barium Ferrite (BaFe12019), 2015 IEEEGoogle Scholar
  26. 26.
    A. Kumar, S.S. Yadava, P. Gautam, A. Khare, K.D. Mandal, Magnetic and dielectric studies of barium hexaferrite (BaFe12O19) ceramic synthesized by chemical route. J. Electroceram. (2018). Google Scholar
  27. 27.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, J. Alloys Compd. 547, 118 (2013)CrossRefGoogle Scholar
  28. 28.
    Z. Zhang, X. Liu, X. Wang, Y. Wu, R. Li, Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe12O19 hexaferrites. J. Alloys Compd. 525, 114–119 (2012)CrossRefGoogle Scholar
  29. 29.
    C.-J. Li, B. Wang, J.-N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1x)LaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324, 1305–1311 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Rai, S. Mishra, V. Nguyen, J. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013)CrossRefGoogle Scholar
  31. 31.
    I. Sadiq, I. Khan, F. Aen, M.U. Islam, M.U. Rana, Influence of rare earth Ce3+ on structural, electrical and magnetic properties of Sr2þ based W-type hexagonal ferrites. Phys. B 407, 1256–1261 (2012)CrossRefGoogle Scholar
  32. 32.
    O. Kubo, T. Ido, H. Yokoyama, Y. Koike, Appl. Phys. 57(8), 4280–4282 (1985)CrossRefGoogle Scholar
  33. 33.
    G. Litsardakis, I. Manolakis, A.C. Stergiou, C. Serletis, K.G. Efthimiadis, New disubstituted Ba hexaferrites with high coercivity. Magn. IEEE Trans. Magn. 44, 4222–4224 (2008)CrossRefGoogle Scholar
  34. 34.
    İ. Araz, Microwave characterization of co-doped barium hexaferrite absorber material. J. Supercond. Nov. Magn. 29(6), 1545 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani and M. Homma, M-type ferrite composite as a microwave absorber with wide bandwidth in the GHz range. IEEE Trans. Magn. 35, 3154–3156 (1999)CrossRefGoogle Scholar
  36. 36.
    M.N. Ashiq, M.J. Iqbal, M.N. Haq, P.H. Gomez, A.M. Qureshi, J. Magn. Magn. Mater. 324, 15 (2012)CrossRefGoogle Scholar
  37. 37.
    C.A. Stergiou, I. Manolakis, T.V. Yioultsis, G. Litsardakis, Dielectric, and magnetic properties of new rare-earth substituted Ba-hexaferrites in the 2–18 GHz frequency range. J. Magn. Magn. Mater. 322, 1532–1535 (2010)CrossRefGoogle Scholar
  38. 38.
    H.-S. Cho, S.-S. Kim, M-Hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Trans. Magn. 35(5), 3151–3153 (1999)CrossRefGoogle Scholar
  39. 39.
    S.A. Schelkunoff, Electromagnetic waves (Princeton, D. Van Nostrand, 1943)Google Scholar
  40. 40.
    R.B. Shulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30(3), 187–201 (1988)CrossRefGoogle Scholar
  41. 41.
    S. Chang, S. Kangning, C. Pengfei, Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324(2012), 802–805 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Atomic Sensor LaboratoryTUBITAK National Metrology InstituteGebzeTurkey

Personalised recommendations