Advertisement

Defect generation mechanism in magnetron sputtered metal films on PMMA substrates

  • Junshan LiuEmail author
  • Liufeng He
  • Zheng Xu
  • Xinyue Zhao
  • Yue Zhang
  • Riye Xue
  • Guojun Ma
  • Mancang Song
  • Liding Wang
Article
  • 1 Downloads

Abstract

Polymer metallization is widely used in a variety of micro and nano system technologies, and magnetron sputtering of a metal film is one of the essential processes of polymer metallization. However, some defects are likely generated in sputtered metal films on a polymer substrate. In this work, the defect generation mechanism in the sputtered Au film on a polymethylmethacrylate (PMMA) substrate was investigated for the first time. The characteristics of defects on the PMMA surface and in the Au film were examined by an optical microscope, a scanning electron microscope (SEM) and a confocal microscope. Detailed characterization results indicate that the ejected Au atoms bombard the PMMA substrate and cause snowflake-like defects on the PMMA surface because of the low hardness of PMMA, then Au atoms nucleate and grow at PMMA defect sites and form a partially suspended metal film, subsequently dropping the photoresist makes the suspended metal film conformally adhere to the PMMA defect, and the snowflake-like morphology is replicated to the metal film. The effects of sputtering parameters on the defects were studied, and the amount of defects in the Au film reduced with the decrease of the sputtering power or the sputtering pressure.

Notes

Acknowledgements

The authors are grateful for the valuable discussion with Prof. Yapu Zhao at Institute of Mechanics, Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (Grant Nos. 51875083, 51621064).

Supplementary material

10854_2019_1855_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1237 kb)

References

  1. 1.
    J.A. Rogers, T. Someya, Y.G. Huang, Science 327, 1603–1607 (2010)CrossRefGoogle Scholar
  2. 2.
    K.M. Weerakoon-Ratnayake, C.E. O’Neil, F.I. Uba, S.A. Soper, Lab Chip 17, 362–381 (2017)CrossRefGoogle Scholar
  3. 3.
    Q.L. Hua, J.L. Sun, H.T. Liu, R.R. Bao, R.M. Yu, J.Y. Zhai, C.F. Pan, Z.L. Wang, Nat. Commun. 9, 244 (2018)CrossRefGoogle Scholar
  4. 4.
    M.S. Wiederoder, I. Misri, D.L. DeVoe, Sensor. Actuators B-Chem. 234, 493–497 (2016)CrossRefGoogle Scholar
  5. 5.
    G. Schwartz, B.C.K. Tee, J.G. Mei, A.L. Appleton, D.H. Kim, H.L. Wang, Z.N. Bao, Nat. Commun. 4, 1859 (2013)CrossRefGoogle Scholar
  6. 6.
    J. Kim, A. Banks, Z.Q. Xie, S.Y. Heo, P. Gutruf, J.W. Lee, S. Xu, K.I. Jang, F. Liu, G. Brown, J. Choi, J.H. Kim, X. Feng, Y.G. Huang, U. Paik, J.A. Rogers, Adv. Funct. Mater. 25, 4761–4767 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Ellmer, J. Phys. D Appl. Phys. 33, R17–R32 (2000)CrossRefGoogle Scholar
  8. 8.
    Z. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448–11456 (2013)CrossRefGoogle Scholar
  9. 9.
    Z. Zang, Appl. Phys. Lett. 112, 042106 (2018)CrossRefGoogle Scholar
  10. 10.
    G. Abadias, S. Dub, R. Shmegera, Surf. Coat. Tech. 200, 6538–6543 (2006)CrossRefGoogle Scholar
  11. 11.
    E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson, Appl. Phys. Lett. 42, 698–700 (1983)CrossRefGoogle Scholar
  12. 12.
    U. Ali, A. Karim, J.B. Khairil, N.A. Buang, Polym. Rev. 55, 678–705 (2015)CrossRefGoogle Scholar
  13. 13.
    P.S. Mcleod, L.D. Hartsough, J. Vac. Sci. Technol. 14, 263–265 (1977)CrossRefGoogle Scholar
  14. 14.
    J. Lee, J.S. Noh, S.H. Lee, B. Song, H. Jung, W. Kim, W. Lee, Int. J. Hydrog. Energy 37, 7934–7939 (2012)CrossRefGoogle Scholar
  15. 15.
    T.K. Shih, C.F. Chen, J.R. Ho, C.Y. Liu, F.T. Chuang, Appl. Surf. Sci. 253, 2043–2049 (2006)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, Q. Zhan, Y. Yu, L. Liu, H. Li, H. Yang, Y. Xie, B. Wang, S. Xie, R.W. Li, Appl. Phys. Lett. 108, 102409 (2016)CrossRefGoogle Scholar
  17. 17.
    S.J. Yu, Y.D. Sun, Y. Ni, X.F. Zhang, H. Zhou, A.C.S. Appl, Mater. Inter. 8, 5706–5714 (2016)CrossRefGoogle Scholar
  18. 18.
    A.K. Mo, V.L. Brown, B.K. Rugg, T.C. Devore, H.M. Meyer, X.F. Hu, W.C. Hughes, B.H. Augustine, Adv. Funct. Mater. 23, 1431–1439 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. He, Y.D. Yan, Y.Q. Geng, E. Brousseau, Appl. Surf. Sci. 427, 1076–1083 (2018)CrossRefGoogle Scholar
  20. 20.
    J.S. Liu, L.C. He, L. Wang, Y.C. Man, L.Y. Huang, Z. Xu, D. Ge, J.M. Li, C. Liu, L.D. Wang, ACS. Appl. Mater. Inter. 8, 30576–30582 (2016)CrossRefGoogle Scholar
  21. 21.
    J.A. Venables, G.D.T. Spiller, M. Hanbucken, Rep. Prog. Phys. 47, 399–459 (1984)CrossRefGoogle Scholar
  22. 22.
    R.E. Jones, H.F. Winters, L.I. Maissel, J. Vac. Sci. Technol. 5, 84–87 (1968)CrossRefGoogle Scholar
  23. 23.
    C.R. Priestland, S.D. Hersee, Vacuum 22, 103–106 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Micro/Nano Technology and Systems of Liaoning ProvinceDalian University of TechnologyDalianChina
  2. 2.Key Laboratory for Precision & Non-traditional Machining Technology of Ministry of EducationDalian University of TechnologyDalianChina
  3. 3.Department of Engineering MechanicsDalian University of TechnologyDalianChina

Personalised recommendations