Influences of platinum doping concentrations and operation temperatures on oxygen sensitivity of Pt/SnO2/Pt resistive gas sensors

  • Sinan Oztel
  • Senol KayaEmail author
  • Erhan Budak
  • Ercan Yilmaz


Influences of surface platinum (Pt) doping concentrations and operation temperatures on oxygen sensing properties of Pt/SnO2/Pt metal–semiconductor–metal (MSM) resistive gas sensors were investigated incorporating structural and chemical variations. Although tetragonal phase dominated crystallographic structure of the virgin film, it was observed that the triclinic phase with minor peak intensities was also present. With increasing the doped Pt concentration, the triclinic phase of the SnO2 cannot be detected due to diffusion of the Pt into the SnO2 lattices. Surface particle sizes increased up to 200 nm and relative porosity of the film surface almost enhanced with increasing the Pt concentrations. Oxygen deficient and chemically metastable phase of the SnxOy was transformed to SnO2 with the Pt addition due to catalytic effects of the Pt. Different vibrational modes became active depending on the Pt content which was due to the stretching of the SnO2 bonds. In addition, the resistivity of the Pt-doped SnO2 films increased with the Pt additions. The oxygen sensitivity of the sensor increased with increasing both the Pt concentrations and operation temperatures. The optimum operation temperature was found to be 335 °C. Interestingly, as operation temperature exceeds to 225 °C, high Pt concentration decreased the sensor sensitivity. In addition, selectivity of the MSM sensor changes with the Pt additions. The obtained results have depicted that the parameters used in the sensor fabrication and operation should be carefully selected to increase sensing properties of the MSM resistive gas sensors.



This work is partially supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number: 2016K121110 and BAİBU under Contract Number: 2018.34.01.1395.


  1. 1.
    J.W. Ma, H.Q. Fan, H.L. Tian, X.H. Ren, C. Wang, S. Gao, W.J. Wang, Ultrahigh sensitivity and selectivity chlorine gas sensing of In2O3 hollow microtubules by bio-template method with degreasing cotton. Sens. Actuator B 262, 17–25 (2018)CrossRefGoogle Scholar
  2. 2.
    P. Li, H. Fan, Y. Cai, In2O3/SnO2 heterojunction microstructures: facile room temperature solid-state synthesis and enhanced Cl2 sensing performance. Sens. Actuator B 185, 110–116 (2013)CrossRefGoogle Scholar
  3. 3.
    M. Sinha, R. Mahapatra, B. Mondal, R. Ghosh, A high-sensitivity gas sensor toward methanol using ZnO microrods: effect of operating temperature. J. Electron. Mater. 46, 2476–2482 (2017)CrossRefGoogle Scholar
  4. 4.
    C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel) 10, 2088–2106 (2010)CrossRefGoogle Scholar
  5. 5.
    H.S. Gu, Z. Wang, Y.M. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors (Basel) 12, 5517–5550 (2012)CrossRefGoogle Scholar
  6. 6.
    W.K. Choi, S.K. Song, J.S. Cho, Y.S. Yoon, D. Choi, H.J. Jung, S.K. Koh, H-2 gas-sensing characteristics of SnOx sensors fabricated by a reactive ion-assisted deposition with/without an activator layer. Sens. Actuator B 40, 21–27 (1997)CrossRefGoogle Scholar
  7. 7.
    D. Degler, H.W.P. de Carvalho, K. Kvashnina, J.D. Grunwaldt, U. Weimar, N. Barsan, Structure and chemistry of surface-doped Pt:SnO2 gas sensing materials. RSC Adv. 6, 28149–28155 (2016)CrossRefGoogle Scholar
  8. 8.
    S.H. Kim, K.T. Lee, S. Lee, J.H. Moon, B.T. Lee, Effects of Pt/Pd co-doping on the sensitivity of SnO2 thin film sensors. Jpn. J. Appl. Phys. 2(41), L1002–L1005 (2002)CrossRefGoogle Scholar
  9. 9.
    Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors (Basel) 12, 2610–2631 (2012)CrossRefGoogle Scholar
  10. 10.
    V.K.K. Tangirala, H. Gomez-Pozos, V. Rodriguez-Lugo, M.D. Olvera, A study of the CO sensing responses of Cu-, Pt- and Pd-activated SnO2 sensors: effect of precipitation agents, dopants and doping methods. Sensors (Basel) 17, 1011 (2017)CrossRefGoogle Scholar
  11. 11.
    C.C. Ling, T.C. Guo, W.B. Lu, Y. Xiong, L. Zhu, Q.Z. Xue, Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction. Nanoscale 9, 8848–8857 (2017)CrossRefGoogle Scholar
  12. 12.
    W.B. Othmen, Z. Ben Hamed, B. Sieber, A. Addad, H. Elhouichet, R. Boukherroub, Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction. Appl. Surf. Sci. 434, 879–890 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, J. Szuber, XPS depth profiling studies of L-CVD SnO2 thin films. Appl. Surf. Sci. 252, 7730–7733 (2006)CrossRefGoogle Scholar
  14. 14.
    M.D. Olvera, R. Asomoza, SnO2 and SnO2:Pt thin films used as gas sensors. Sens. Actuator B 45, 49–53 (1997)CrossRefGoogle Scholar
  15. 15.
    A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95, 6374–6380 (2004)CrossRefGoogle Scholar
  16. 16.
    N. Barsan, U. Weimar, Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167 (2001)CrossRefGoogle Scholar
  17. 17.
    X. Wang, P.R. Ren, H.L. Tian, H.Q. Fan, C.L. Cai, W.G. Liu, Enhanced gas sensing properties of SnO2: the role of the oxygen defects induced by quenching. J. Alloy. Compd. 669, 29–37 (2016)CrossRefGoogle Scholar
  18. 18.
    H.S. Yoon, J.H. Kim, H.J. Kim, H.N. Lee, H.C. Lee, Preparation of gas sensors with nanostructured SnO2 thick films with different Pd doping concentrations by an ink dropping method. J. Korean Ceram. Soc. 54, 243–248 (2017)CrossRefGoogle Scholar
  19. 19.
    M.B. Amjoud, F. Maury, MOCVD preparation of Pt-doped SnO2 films. Vide 53, 614 (1998)Google Scholar
  20. 20.
    T.V.K. Karthik, M.D.L.L. Olvera, A. Maldonado, V. Velumurugan, Sensing properties of undoped and Pt-doped SnO2 thin films deposited by chemical spray. Mater. Sci. Semicond. Proc. 37, 143–150 (2015)CrossRefGoogle Scholar
  21. 21.
    J.S. Chen, W.T. Lo, J.L. Huang, Gas sensitivity of reactively sputtered SnO2 films. J. Ceram. Soc. Jpn. 110, 18–21 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Tricoli, M. Graf, S.E. Pratsinis, Optimal doping for enhanced SnO2 sensitivity and thermal stability. Adv. Funct. Mater. 18, 1969–1976 (2008)CrossRefGoogle Scholar
  23. 23.
    Y.F. Sun, X.J. Huang, F.L. Meng, J.H. Liu, Study of influencing factors of dynamic measurements based on SnO2 gas sensor. Sensors (Basel) 4, 95–104 (2004)CrossRefGoogle Scholar
  24. 24.
    X.J. Huang, F.L. Meng, Z.X. Pi, W.H. Xu, J.H. Liu, Gas sensing behavior of a single tin dioxide sensor under dynamic temperature modulation. Sens. Actuator B 99, 444–450 (2004)CrossRefGoogle Scholar
  25. 25.
    G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRefGoogle Scholar
  26. 26.
    G. Jimenez-Cadena, J. Riu, F.X. Rius, Gas sensors based on nanostructured materials. Analyst 132, 1083–1099 (2007)CrossRefGoogle Scholar
  27. 27.
    C. Wang, H.Q. Fan, X.H. Ren, Y. Wen, W.J. Wang, Highly dispersed PtO nanodots as efficient co-catalyst for photocatalytic hydrogen evolution. Appl. Surf. Sci. 462, 423–431 (2018)CrossRefGoogle Scholar
  28. 28.
    J. Li, H.Q. Fan, X.P. Chen, Z.Y. Cao, Structural and photoluminescence of Mn-doped ZnO single-crystalline nanorods grown via solvothermal method. Colloid Surf. A 349, 202–206 (2009)CrossRefGoogle Scholar
  29. 29.
    Q.P. Tran, J.S. Fang, T.S. Chin, Optical properties and boron doping-induced conduction-type change in SnO2 thin films. J. Electron. Mater. 45, 349–356 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Zarrinkhameh, A. Zendehnam, S.M. Hosseini, N. Robatmili, M. Arabzadegan, Effect of oxidation and annealing temperature on optical and structural properties of SnO2. Bull. Mater Sci 37, 533–539 (2014)CrossRefGoogle Scholar
  31. 31.
    V.A. Matylitskaya, O. Brunkahl, G. Kothleitner, W. Bock, B.O. Kolbesen, Annealing of evaporated and sputtered niobium films in oxygen and nitrogen rich atmospheres by rapid thermal processing (RTP). Phys. Status Solidi C 4(6), 1802–1816 (2007)CrossRefGoogle Scholar
  32. 32.
    W.X. He, W.M. Zheng, P. Xie, B. Li, X.W. Lv, C. Jing, D.Q. Liu, Compositional correlation and polymorphism in BaF2–PrF3 thin films deposited using electron-beam evaporation. Thin Solid Films 669, 558–563 (2019)CrossRefGoogle Scholar
  33. 33.
    M. Ohring, Materials science of thin films (Academic Press Limited, New York, 1992)Google Scholar
  34. 34.
    Periodic table of elements sorted by ionic radius. Accessed 8 April, 2019
  35. 35.
    R.K. Mishra, A. Kushwaha, P.P. Sahay, Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv. 4, 3904–3912 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Kaya, E. Yilmaz, H. Karacali, A.O. Cetinkaya, A. Aktag, Samarium oxide thin films deposited by reactive sputtering: effects of sputtering power and substrate temperature on microstructure, morphology and electrical properties. Mater. Sci. Semicond. Proc. 33, 42–48 (2015)CrossRefGoogle Scholar
  37. 37.
    R.K. Mishra, P. Sahay, Synthesis, characterization and alcohol sensing property of Zn-doped SnO2 nanoparticles. Ceram. Int. 38, 2295–2304 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Fliegel, G. Behr, J. Werner, G. Krabbes, Preparation, development of microstructure, electrical and gas-sensitive properties of pure and doped SnO2 powders. Sens. Actuator B 19, 474–477 (1994)CrossRefGoogle Scholar
  39. 39.
    Z.Y. Zhong, Y.D. Yin, B. Gates, Y.N. Xia, Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater. 12, 206–209 (2000)CrossRefGoogle Scholar
  40. 40.
    A. Parveen, S. Agrawal, A. Azam, Band gap tuning and fluorescence properties of lead sulfide Pb(0.9)A(0.1) S (A: Fe Co, and Ni) nanoparticles by transition metal doping. Opt. Mater. 76, 21–27 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Kaya, Evolutions on surface chemistry, microstructure, morphology and electrical characteristics of SnO2/p-Si heterojuction under various annealing parameters. J. Alloy. Compd. 778, 889–899 (2019)CrossRefGoogle Scholar
  42. 42.
    X.S. Peng, L.D. Zhang, G.W. Meng, Y.T. Tian, Y. Lin, B.Y. Geng, S.H. Sun, Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powders. J. Appl. Phys. 93, 1760–1763 (2003)CrossRefGoogle Scholar
  43. 43.
    L. Abello, B. Bochu, A. Gaskov, S. Koudryavtseva, G. Lucazeau, M. Roumyantseva, Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy. J. Solid State Chem. 135, 78–85 (1998)CrossRefGoogle Scholar
  44. 44.
    T.N. Tran, T.V.A. Pham, M.L.P. Le, T.P.T. Nguyen, V.M. Tran, Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Adv. Nat. Sci. 4, 045007 (2013)Google Scholar
  45. 45.
    P.A. Christensen, P.S. Attidekou, R.G. Egdell, S. Maneelok, D.A.C. Manning, An in situ FTIR spectroscopic and thermogravimetric analysis study of the dehydration and dihydroxylation of SnO2: the contribution of the (100), (110) and (111) facets. Phy. Chem. Chem. Phys. 18, 22990–22998 (2016)CrossRefGoogle Scholar
  46. 46.
    S.K. Sinha, S.K. Ray, I. Manna, Effect of Al doping on structural, optical and electrical properties of SnO2 thin films synthesized by pulsed laser deposition. Philos. Mag. 94, 3507–3521 (2014)CrossRefGoogle Scholar
  47. 47.
    T. Wang, D. Huang, Z. Yang, S.S. Xu, G.L. He, X.L. Li, N.T. Hu, G.L. Yin, D.N. He, L.Y. Zhang, A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 8, 95–119 (2016)CrossRefGoogle Scholar
  48. 48.
    R. Deivasegamani, G. Karunanidhi, C. Santhosh, T. Gopal, D.S. Achari, A. Neogi, R. Nivetha, N. Pradeep, U. Venkatraman, A. Bhatnagar, S.K. Jeong, A.N. Grace, Chemoresistive sensor for hydrogen using thin films of tin dioxide doped with cerium and palladium. Microchim. Acta 184, 4765–4773 (2017)CrossRefGoogle Scholar
  49. 49.
    C.M. Ghimbeu, J. Schoonman, M. Lumbreras, M. Siadat, Electrostatic spray deposited zinc oxide films for gas sensor applications. Appl. Surf. Sci. 253, 7483–7489 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Tricoli, M. Righettoni, A. Teleki, Semiconductor Gas sensors: dry synthesis and application. Angew. Chem. Int. Ed. 49, 7632–7659 (2010)CrossRefGoogle Scholar
  51. 51.
    D.S. Vlachos, C.A. Papadopoulos, J.N. Avaritsiotis, Characterisation of the catalyst-semiconductor interaction mechanism in metal-oxide gas sensors. Sens. Actuator B 44, 458–461 (1997)CrossRefGoogle Scholar
  52. 52.
    C.A. Papadopoulos, J.N. Avaritsiotis, A model for the gas-sensing properties of tin oxide thin-films with surface catalysts. Sens. Actuator B 28, 201–210 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nuclear Radiation Detectors Research and Applications, BAIBUBoluTurkey
  2. 2.Physics Department, Arts and Science FacultyBolu Abant Izzet Baysal UniversityBoluTurkey
  3. 3.Chemistry Department, Arts and Science FacultyBolu Abant Izzet Baysal UniversityBoluTurkey

Personalised recommendations