Influence of La/B ratio on the structure, sinterability and crystallization of La2O3–B2O3–CaO glass–ceramics

  • Weijun Zhang
  • Fenglin Wang
  • Xingyu ChenEmail author
  • Haijun Mao


To have a better understanding on the characteristics of La2O3–B2O3–CaO (LBC) glass–ceramics designed for low temperature co-fired ceramic applications, LBC glass–ceramics with La/B ratio changing from 1:6.0 to 1:3.0 were prepared, and the network structure, sinterability, crystalline phase composition and crystallization kinetics of synthesized LBC glass–ceramics were investigated. The increase of La/B ratio would reduce the content of [BO4] units in the network structure, and decrease the glass transition temperature as well as the softening temperature of LBC glass–ceramics. But low La/B ratio of glass could cause serious foaming during sintering process. The change of La/B ratio would influence the position as well as intensity of crystalline peaks on DSC curves, and the composition and microstructure of crystalline phases were also affected. The crystallization activation energies of LBC glass–ceramics were 157.9–498.7 kJ/mol, which raised up with the increase of La/B ratio.



This work is supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3602), the National Natural Science Foundation of China (Grant No. 51702363) and the Research Project of National University of Defense Technology (ZK18-03-51).


  1. 1.
    Y.J. Seo, D.J. Shin, Y.S. Cho, Phase evolution and microwave dielectric properties of lanthanum borate-based low-temperature co-fired ceramics materials. J. Am. Ceram. Soc. 89, 2352–2355 (2006)Google Scholar
  2. 2.
    D.S. Jung, Y.C. Kang, Sintering behavior of La2O3-B2O3-TiO2 glass powders prepared by spray pyrolysis for low temperature co-fired ceramics. Ceram. Int. 35, 1829–1835 (2009)CrossRefGoogle Scholar
  3. 3.
    Y.H.A. Lee, W.C.J. Wei, Processing and characterization of La2O3-SiO2-B2O3 (LSB) based glass-ceramics for LTCC application. Key Eng. Mater. 280–283, 935–940 (2005)Google Scholar
  4. 4.
    H. Ren, L. Hao, H. Peng et al., Investigation on low-temperature sinterable behavior and tunable dielectric properties of BLMT glass-Li2ZnTi3O8 composite ceramics. J. Eur. Ceram. Soc. 38, 3498–3504 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Chen, S. Zhang, E. Li et al., Sintering characteristic and microwave dielectric properties of 0.45Ca0.6Nd0.267TiO3-0.55Li0.5Nd0.5TiO3 ceramics with La2O3-B2O3-ZnO additive. Appl. Phys. A 124, 188 (2018)CrossRefGoogle Scholar
  6. 6.
    S.V. Smiljanić, S.R. Grujić, M.B. Tošić et al., Effect of La2O3 on the structure and the properties of strontium borate glasses. Chem. Ind. Chem. Eng. Q. 22, 111–115 (2016)CrossRefGoogle Scholar
  7. 7.
    S.V. Smiljanić, S.R. Grujić, M.B. Tošić et al., Crystallization and sinterability of glass-ceramics in the system La2O3-SrO-B2O3. Ceram. Int. 40, 297–305 (2014)CrossRefGoogle Scholar
  8. 8.
    I. Dyamant, E. Korin, J. Hormadaly, Thermal and some physical properties of glasses in the La2O3-CaO-B2O3 ternary system. J. Non-Cryst. Solids 354, 3135–3141 (2008)CrossRefGoogle Scholar
  9. 9.
    Y.H. Jo, M.S. Kang, K.W. Chung et al., Chemical stability and dielectric properties of RO-La2O3-B2O3, (R = Ca, Mg, Zn)-based ceramics. Mater. Res. Bull. 43, 361–369 (2008)CrossRefGoogle Scholar
  10. 10.
    I. Dyamant, E. Korin, J. Hormadaly, Characteristics of La2CaB10O19 crystallization from glass. J. Non-Cryst. Solids 356, 1784–1790 (2010)CrossRefGoogle Scholar
  11. 11.
    I. Dyamant, E. Korin, J. Hormadaly, Non-isothermal crystallization kinetics of La2CaB10O19 from glass. J. Non-Cryst. Solids 357, 1690–1695 (2011)CrossRefGoogle Scholar
  12. 12.
    F. Wang, Y. Zhang, X. Chen et al., Influence of B2O3 content on sintering behaviour and dielectric properties of La2O3-B2O3-CaO/Al2O3 glass-ceramic composites for LTCC applications. IOP Conf. Ser. Mater. Sci. Eng. 291, 012046 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Kaur, M. Kumar, A. Arora et al., Influence of Y2O3 on structural and optical properties of SiO2-BaO-ZnO-xB2O3-(10-x)Y2O3 glasses and glass ceramics. J. Non-Cryst. Solids 357, 858–863 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Xiang, J. Han, Y. Lai et al., Glass structure, phase transformation and microwave dielectric properties of CaO-B2O3-SiO2 glass-ceramics with addition of La2O3. J. Mater. Sci. Mater. Electron. 28, 9911–9918 (2017)CrossRefGoogle Scholar
  15. 15.
    V. Kumar, R. Gupta, O.P. Pandey et al., Thermal and crystallization kinetics of yttrium and lanthanum calcium silicate glass sealants for solid oxide fuel cells. Int. J. Hydrog. Energy 36, 14971–14976 (2011)CrossRefGoogle Scholar
  16. 16.
    S.P. Singh, K. Pal, A. Tarafder et al., Effects of SiO2 and TiO2 fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of plasma display panels. Bull. Mater. Sci. 33, 33–41 (2010)CrossRefGoogle Scholar
  17. 17.
    L.V. Wullen, G. Schwerin, 11B-MQMAS and 29Si-{11B} double-resonance NMR studies on the structure of binary B2O3–SiO2 glasses. Solid State Nucl. Magn. Reson. 21, 134–144 (2002)CrossRefGoogle Scholar
  18. 18.
    H. Trégouët, D. Caurant, O. Majérus et al., Spectroscopic investigation and crystallization study of rare earth metaborate glasses. Procedia Mater. Sci. 7, 131–137 (2014)CrossRefGoogle Scholar
  19. 19.
    T. Nanba, M. Nishimura, Y. Miura, A theoretical interpretation of the chemical shift of 29Si NMR peaks in alkali borosilicate glasses. Geochim. Cosmochim. Acta 68, 5103–5111 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Das, K. Annapurna, P. Kundu et al., Optical spectra of Nd3+: CaO-La2O3-B2O3 glasses. Mater. Lett. 60, 222–229 (2006)CrossRefGoogle Scholar
  21. 21.
    X. Chen, S. Bai, M. Li et al., Synthesis, characterization, and dielectric properties of low loss LaBO3 ceramics. J. Eur. Ceram. Soc. 33, 3001–3006 (2013)CrossRefGoogle Scholar
  22. 22.
    K. Matusita, S. Sakka, Kinetic study on crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J. Non-Cryst. Solids 38–39, 741–746 (1980)CrossRefGoogle Scholar
  23. 23.
    H.C. Park, S.H. Lee, B.K. Ryu et al., Nucleation and crystallization kinetics of CaO-Al2O3-2SiO2 in powdered anorthite glass. J. Mater. Sci. 31, 4249–4253 (1996)CrossRefGoogle Scholar
  24. 24.
    C.L. Chen, W.C.J. Wei, A. Roosen, Crystallization kinetics of La2O3-Al2O3-B2O3 glass-ceramic composites. J. Eur. Ceram. Soc. 26, 3325–3334 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Weijun Zhang
    • 1
  • Fenglin Wang
    • 1
  • Xingyu Chen
    • 1
    Email author
  • Haijun Mao
    • 1
  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations