Advertisement

Nickel hydroxide and lignocelluloses fibers based flexible paper electrodes for energy storage applications

  • Aneeqa Masood
  • Zahid Shoukat
  • A. R. Rehman
  • Zohaib Shahid
  • Ayesha Chadury
  • Asif Mahmood
  • Shahid Ramay
  • Aamir RazaqEmail author
Article

Abstract

Unconventional and alternative resources are proved incredibly useful for flexible and bendable energy storage devices to meet the demand of modern disposable and bendable technology. Nickle hydroxide [Ni(OH)2] based composites are considered as high-performance electrodes for supercapacitor and batteries applications due to high specific capacitance at higher scan rates. This study presents the fabrication Ni(OH)2 and incorporation of lignocelluloses(LC) fibers as binders to address the inherent rigid structure. Furthermore, electrically conductive properties are address by synthesis of composites with Polypyrrole and Polyaninline. X-Ray diffraction (XRD) results confirm the successful formation of nickel hydroxide whereas scanning microscopy results (SEM) reveal the nanoparticle morphology. Incorporation of LC fibers within Ni(OH)2 particles presented as compact and flexible composite paper electrodes which can be cut with help of scissor in any shape for bulk use. Fourier Transform Infrared (FTIR) confirmed the composite formation and cyclic voltammetry (CV) measurements were performed for all the fabricated samples to observe the electrochemical kinetics by which the best specific capacitance is shown by Ni(OH)2/PPy/LC i.e. 630 Fg−1. These fabricated composites can be used further as flexible electrodes in energy storage applications because of enhanced electrochemical properties. Presented flexible Ni(OH)2 based paper sheets will be highly feasible for modern bendable and disposable energy storage devices due to light-weight and environmentally safe characteristics.

Notes

Acknowledgements

The financial support from NRPU grant no: 5334/Federal/NRPU/R&D/HEC/2016 awarded by Higher Education Commission (HEC), Pakistan are greatly acknowledged. The authors would also like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding under Research Group (No. RG 1435-004).

References

  1. 1.
    N. Parveen, M.H. Cho, Sci. Rep. 6, 27318 (2016)CrossRefGoogle Scholar
  2. 2.
    M.K. Motlagh, A.A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Powder Technol. 237, 562 (2013)CrossRefGoogle Scholar
  3. 3.
    U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)CrossRefGoogle Scholar
  4. 4.
    A. Andreev, P. Khristov, A. Losev, Appl. Catal. B 7, 225 (1996)CrossRefGoogle Scholar
  5. 5.
    Y.E. Roginskaya, O.V. Morozova, E.N. Lubnin, Y.E. Ulitina, G.V. Lopukhova, S. Trasatti, Langmuir 13, 4621 (1997)CrossRefGoogle Scholar
  6. 6.
    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, R. Wang, X. Yan, Sci. Rep. 5, 11095 (2015)CrossRefGoogle Scholar
  8. 8.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A 471, 20140792 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, J. Mol. Catal. A 216, 35 (2004)CrossRefGoogle Scholar
  10. 10.
    M. Yoshimura, H. Suda, K. Okamoto, K. Ioku, J. Mater. Sci. 29, 3399 (1994)CrossRefGoogle Scholar
  11. 11.
    M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng, C. Wang, X. Wu, G. Dong, C. Long, W. Wang, Y. Gao, J. Power Sources 418, 202 (2019)CrossRefGoogle Scholar
  12. 12.
    M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, P. Wu, Chem. Eng. J. 347, 291 (2018)CrossRefGoogle Scholar
  13. 13.
    K. Matsui, T. Kyotani, A. Tomita, Adv. Mater. 14, 1216 (2002)CrossRefGoogle Scholar
  14. 14.
    W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Chem. Lett. 33, 1366 (2004)CrossRefGoogle Scholar
  15. 15.
    L.L. Zhang, Z. Xiong, X.S. Zhao, J. Power Sources 222, 326 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y. Chen, Adv. Funct. Mater. 25, 1063 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Ghosh, S. Giri, M. Mandal, C.K. Das, RSC Adv. 4, 26094 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, N. Zhao, App. Surf. Sci. 441, 194 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Vidotti, C.D. Cerri, R.F. Carvalhal, J.C. Dias, R.K. Mendes, S.I.C. de Torresi, L.T. Kubota, J. Electroanal. Chem. 636, 18 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, J. Mater. Chem. A 6, 2482 (2018)CrossRefGoogle Scholar
  22. 22.
    S.J. Kim, M.K. Hong, J.K. Chung, S.Y. Park, J. Ceram. Process. Res. 13, 274 (2012)Google Scholar
  23. 23.
    L.T. Scarabelot, D. Muller, L.V. De Souza, D. Hotza, C.R. Rambo, J. Electron. Mater. 46, 5232 (2017)CrossRefGoogle Scholar
  24. 24.
    L. Ma, H. Fan, X. Wei, S. Chen, Q. Hu, Y. Liu, C. Zhi, W. Lu, J.A. Zapien, H. Huang, J. Mater. Chem. A 6, 19058 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, Nat. Mater. 8, 648 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Song, T.Y. Liu, X.X. Xu, D.Y. Feng, Y. Li, X.X. Liu, Adv. Funct. Mater. 25, 4626 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Adv. Sci. 4, 201700107 (2017)Google Scholar
  28. 28.
    M.Y. Rafiq, F. Iqbal, F. Aslam, M. Bilal, N. Munir, I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, J. Alloys Compd. 729, 1072 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Farid, A. Islam, A. Masood, F. Iqbal, M.Y. Rafique, A. Razaq, Ceram. Int. 44, 11397 (2018)CrossRefGoogle Scholar
  30. 30.
    M. Murthy, G.S. Nagarajan, J.W. Weidner, J.W. Van Zee, J. Electrochem. Soc. 143, 2319 (1996)CrossRefGoogle Scholar
  31. 31.
    J.Tientong, S. Garcia, C.R. Thurber, T.D. Golden, J. Nanotechnol. (2014).  https://doi.org/10.1155/2014/193162 Google Scholar
  32. 32.
    Z. Zhao, M. Moussa, G. Shi, Q. Meng, R. Wang, J. Ma, Compos. Sci. Technol. 127, 36 (2016)CrossRefGoogle Scholar
  33. 33.
    L. Jiang, J.A. Syed, Y. Gao, H. Lu, X. Meng, App. Surf. Sci. 440, 1011 (2018)CrossRefGoogle Scholar
  34. 34.
    M. Taibi, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Drillon, J. Mater. Chem. 12, 3238 (2002)CrossRefGoogle Scholar
  35. 35.
    A.K. Sharma, S. Desnavi, C. Dixit, U. Varshney, A. Sharma, Int. J. Chem. Eng. Appl. 6, 156 (2015)Google Scholar
  36. 36.
    R. Acharya, T. Subbaiah, S. Anand, R.P. Das, Mater. Lett. 57, 3089 (2003)CrossRefGoogle Scholar
  37. 37.
    M.S. Nazir, B.A. Wahjoedi, A.W. Yussof, M.A. Abdullah, BioResources 8, 2161 (2013)CrossRefGoogle Scholar
  38. 38.
    B.S. Singu, P. Srinivasan, S. Pabba, J. Electrochem. Soc. 159, A6 (2011)CrossRefGoogle Scholar
  39. 39.
    P. Gemeiner, J. Kuliček, M. Mikula, M. Hatala, Ľ. Švorc, L. Hlavatá, M. Mičušík, M. Omastová, Synth. Met. 210, 323 (2015)CrossRefGoogle Scholar
  40. 40.
    J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, Electrochem. Solid State Lett. 5, H7 (2002)CrossRefGoogle Scholar
  41. 41.
    H. Jiang, C. Li, T. Sun, J. Ma, Chem. Commun. 48, 2606 (2012)CrossRefGoogle Scholar
  42. 42.
    F. Wolfart, D.P. Dubal, M. Vidotti, P. Gómez-Romero, RSC Adv. 6, 15062 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Wang, Y. Wang, L. Jiang, J. Appl. Electrochem. 48, 495 (2018)CrossRefGoogle Scholar
  44. 44.
    F. Liu, X. Chu, H. Zhang, B. Zhang, H. Su, L. Jin, W. Yang, Electrochim. Acta 269, 102 (2018)CrossRefGoogle Scholar
  45. 45.
    L.L. Zhang, H.H. Li, C.Y. Fan, K. Wang, X.L. Wu, H.Z. Sun, J.P. Zhang, J. Mater. Chem. A 3, 19077 (2015)CrossRefGoogle Scholar
  46. 46.
    S.H. Kazemi, K. Malae, J. Iran. Chem. Soc. 14, 419 (2017)CrossRefGoogle Scholar
  47. 47.
    Z. Zeng, P. Sun, J. Zhu, X. Zhu, Surf. Interfaces 8, 73 (2017)CrossRefGoogle Scholar
  48. 48.
    D. Ghosh, M. Mandal, C.K. Das, Langmuir 31, 7835 (2015)CrossRefGoogle Scholar
  49. 49.
    A.A. AbdelHamid, X. Yang, J. Yang, X. Chen, J.Y. Ying, Nano Energy 26, 425 (2016)CrossRefGoogle Scholar
  50. 50.
    M.F.Iqbal, A. Razaq, M.N. Ashiq, Y.V. Kaneti, A.A. Azhar, F. Yasmeen, K. Saleem Joya, S. Abbass, ChemElectroChem 5, 2636 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS University Islamabad, Lahore CampusLahorePakistan
  2. 2.Department of PhysicsUniversity of AgricultureFaisalabadPakistan
  3. 3.Chemical Engineering DepartmentCollege of Engineering King Saud University RiyadhRiyadhSaudi Arabia
  4. 4.Physics and Astronomy DepartmentCollege of Science King Saud University RiyadhRiyadhSaudi Arabia

Personalised recommendations