Carbon encapsulated mixed-metal sulfide as proficient electrocatalyst for hydrogen evolution reaction

  • Shahid HussainEmail author
  • Nabi Ullah
  • Yingyi ZhangEmail author
  • Nimra Aslam
  • Asma Shaheen
  • Muhammad Sufyan Javed
  • Mingsong WangEmail author
  • Guiwu Liu
  • Guanjun Qiao


Proficient electrocatalyst for hydrogen evolution reaction (HER) synthesized via a single-step, simple and low-temperature pyrolysis method. The mixed metal sulfide catalyst Co9S8/NiS@C shows irregular multi-shaped structure having small pores covered with carbon layers. The as-prepared Co9S8/NiS@C composites are made up of very small intermingled nanoparticles. The tiny nanoparticle contains large surface area that serves as an active-site for excellent HER performances. The Co9S8/NiS@C electrode is tested under alkaline solution performs overpotential (vs. RHE) of 0.28 V at current density of 10 mA cm−2. It exhibits a low Rct with an excellent and continuous stability for 10 h. The excellent HER performances of Co9S8/NiS@C are attributed to shape, size, and crystal structure of mixed metal sulfide and small surface pores that provide abundant active sites for electrocatalysis reaction.



This work was supported by the National Natural Science Foundation of China (51572111, 11774136, 51604049), Natural Science Foundation of Jiangsu Province (Grant No. BK20161347), the Six Talent Peaks Project (TD-XCL-004), the 333 Talents project (BRA2017387), the Innovation/Entrepreneurship Program ([2015]26) and the Qing Lan Project ([2016]15) of Jiangsu Province.


  1. 1.
    L. Zhang, W. Liu, Y. Dou, Z. Du, M. Shao, The role of transition metal and nitrogen in metal–N–C composites for hydrogen evolution reaction at universal pHs. J. Phys. Chem. C 120, 29047–29053 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Zhuang, X. Ou, Y. Dou, L. Zhang, Q. Zhang, R. Wu et al., Polymer-embedded fabrication of Co2P nanoparticles encapsulated in N, P-doped graphene for hydrogen generation. Nano Lett. 16, 4691–4698 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Li, H. Lei, X. Guo, X. Zhao, S. Ding, X. Gao et al., Graphene-supported pyrene-modified cobalt corrole with a triphenylphosphine axial ligand for enhanced hydrogen evolution in pH 0–14 aqueous solutions. Chemsuschem 10(22), 4632–4641 (2017)CrossRefGoogle Scholar
  4. 4.
    D. Huang, J. Lu, S. Li, Y. Luo, C. Zhao, B. Hu et al., Fabrication of cobalt porphyrin. Electrochemically reduced graphene oxide hybrid Films for electrocatalytic hydrogen evolution in aqueous solution. Langmuir 30, 6990–6998 (2014)CrossRefGoogle Scholar
  5. 5.
    D. Chanda, J. Hnát, A.S. Dobrota, I.A. Pašti, M. Paidar, K. Bouzek, The effect of surface modification by reduced graphene oxide on the electrocatalytic activity of nickel towards the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 17, 26864–26874 (2015)CrossRefGoogle Scholar
  6. 6.
    L. Wang, Y. Li, M. Xia, Z. Li, Z. Chen, Z. Ma et al., Ni nanoparticles supported on graphene layers: an excellent 3D electrode for hydrogen evolution reaction in alkaline solution. J. Power Sour. 347, 220–228 (2017)CrossRefGoogle Scholar
  7. 7.
    R. Nivetha, S. Chella, P. Kollu, S.K. Jeong, A. Bhatnagar, N.G. Andrews, Cobalt and nickel ferrites based graphene nanocomposites for electrochemical hydrogen evolution. J. Magn. Magn. Mater. 448, 165–171 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li et al., Cobalt nanoparticles embedded in nitrogen-doped carbon for the hydrogen evolution reaction. ACS Appl. Mater. Interfaces 7, 8083–8087 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Wang, Y. Li, X. Yin, Y. Wang, A. Song, Z. Ma et al., Coral-like-structured Ni/C3N4 composite coating: an active electrocatalyst for hydrogen evolution reaction in alkaline solution. ACS Sustain. Chem. Eng. 5, 7993–8003 (2017)CrossRefGoogle Scholar
  10. 10.
    Z. Chen, L. Wang, Z. Ma, J. Song, G. Shao, Ni–reduced graphene oxide composite cathodes with new hierarchical morphologies for electrocatalytic hydrogen generation in alkaline media. RSC Adv. 7, 704–711 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S.G. Mhaisalkar et al., Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem. Int. Ed. 53, 12594–12599 (2014)Google Scholar
  12. 12.
    L. Wang, Y. Li, X. Yin, Y. Wang, L. Lu, A. Song et al., Comparison of three nickel-based carbon composite catalysts for hydrogen evolution reaction in alkaline solution. Int. J. Hydrog. Energy 42, 22655–22662 (2017)CrossRefGoogle Scholar
  13. 13.
    Cai Zx, Xh Song, Wang Yr, X. Chen, Electrodeposition–assisted synthesis of Ni2P nanosheets on 3D graphene/Ni foam electrode and its performance for electrocatalytic hydrogen production. ChemElectroChem 2, 1665–1671 (2015)CrossRefGoogle Scholar
  14. 14.
    R.K. Shervedani, M. Torabi, F. Yaghoobi, Binder-free prickly nickel nanostructured/reduced graphene oxide composite: a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline solutions. Electrochim. Acta 244, 230–238 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Yang, C. Cai, Y. Li, L. Gao, H. Guo, B. Wang et al., In-situ cobalt and nitrogen doped mesoporous graphitic carbon electrocatalyst via directly pyrolyzing hyperbranched cobalt phthalocyanine for hydrogen evolution reaction. Electrochim. Acta 262, 48–56 (2018)CrossRefGoogle Scholar
  16. 16.
    H.J. Qiu, Y. Ito, W. Cong, Y. Tan, P. Liu, A. Hirata et al., Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew. Chem. Int. Ed. 54, 14031–14035 (2015)CrossRefGoogle Scholar
  17. 17.
    B. Rezaei, A.R.T. Jahromi, A.A. Ensafi, Ni–Co–Se nanoparticles modified reduced graphene oxide nanoflakes, an advance electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim. Acta 213, 23–31 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Yuan, X. Wang, X. Zhong, C.M. Li, CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 8, 20720–20729 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Badrayyana, D.K. Bhat, S. Shenoy, Y. Ullal, Novel Fe–Ni–graphene composite electrode for hydrogen production. Int. J. Hydrog. Energy 40, 10453–10462 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Long, G. Li, Z. Wang, H. Zhu, T. Zhang, S. Xiao et al., Metallic iron–nickel sulfide ultrathin nanosheets as a highly active electrocatalyst for hydrogen evolution reaction in acidic media. J. Am. Chem. Soc. 137, 11900–11903 (2015)CrossRefGoogle Scholar
  21. 21.
    C.-K. Cheng, T.-K. Yeh, M.-C. Tsai, H.-Y. Chou, H.-C. Wu, C.-K. Hsieh, The hybrid nanostructure of vertically aligned cobalt sulfide nanoneedles on three-dimensional graphene decorated nickel foam for high performance methanol oxidation. Surf. Coat. Technol. 320, 536–541 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han et al., Facile one-pot synthesis of CoS2–MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 384, 51–57 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Ma, Q. Zhao, J. Li, B. Tang, Z. Zhang, X. Wang, Three-dimensional well-mixed/highly-densed NiS–CoS nanorod arrays: an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta 260, 82–91 (2018)CrossRefGoogle Scholar
  24. 24.
    C. Zequine, S. Bhoyate, K. Siam, P.K. Kahol, N. Kostoglou, C. Mitterer et al., Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation. Surf. Coat. Technol. 354, 306–312 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Shit, S. Chhetri, W. Jang, N.C. Murmu, H. Koo, Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: an efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 10, 27712–27722 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Yu, Y. Wang, J. Zhang, W. Yang, X. Shu, Y. Qin et al., One-step electrodeposition of Co0·12Ni1·88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance. J. Power Sour. 364, 400–409 (2017)CrossRefGoogle Scholar
  27. 27.
    X. Huang, J. Wang, H. Bao, X. Zhang, Y. Huang, 3D nitrogen, sulfur-codoped carbon nanomaterial-supported cobalt oxides with polyhedron-like particles grafted onto graphene layers as highly active bicatalysts for oxygen-evolving reactions. ACS Appl. Mater. Interfaces 10, 7180–7190 (2018)CrossRefGoogle Scholar
  28. 28.
    Y. Li, Z. Li, P.K. Shen, Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv. Mater. 25, 2474–2480 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Yu, J. Chen, J. Liu, S. Li, Y. Ma, J. Zhang et al., Mesoporous NiCo2O4 nanoneedles grown on 3D graphene-nickel foam for supercapacitor and methanol electro-oxidation. Electrochim. Acta 151, 99–108 (2015)CrossRefGoogle Scholar
  30. 30.
    S. Hussain, T. Liu, M.S. Javed, N. Aslam, N. Shaheen, S. Zhao et al., Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851–11857 (2016)CrossRefGoogle Scholar
  31. 31.
    X. Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, Graphene-like WSe2 nanosheets for efficient and stable hydrogen evolution. J. Alloys Compd. 691, 698–704 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Hussain, M.S. Javed, N. Ullah, A. Shaheen, N. Aslam, I. Ashraf, Y. Abbas, M.S. Wang, G.W. Liu, G.J. Qiao, Unique hierarchical mesoporous LaCrO3 perovskite oxides for highly efficient electrochemical energy storage applications. Ceram. Int. 45, 15164–15170 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Metallurgical EngineeringAnhui University of TechnologyMaanshanPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  4. 4.Department of PhysicsUniversity of SargodhaSargodhaPakistan
  5. 5.Department of Earth SciencesUniversity of SargodhaSargodhaPakistan
  6. 6.Department of PhysicsCOMSATS University IslamabadLahorePakistan

Personalised recommendations