Advertisement

An efficient strategy for preparation of high-k poly(arylene ether nitrile)-based dielectrics with enhanced thermo-stability and good temperature independence

  • Zejun PuEmail author
  • Jialing Xia
  • Xiaoyi Zheng
  • Qi Wang
  • Jingyue Liu
  • Jiachun ZhongEmail author
Article
  • 1 Downloads

Abstract

In this work, the encapsulated barium titanate (BT) (C-PEN@BT) nanoparticles were successfully prepared via rotary coating technology combined with a post-treatment chemical bonding process, by using carboxyl-functionalized poly(arylene ether nitrile) (C-PEN) as modification agent. The TEM, FTIR and TGA results confirmed that the polymer layer (about 8 nm) has been uniformly surrounded on the surface of BT nanoparticles. Then, a facilitated physical dispersion technology was employed to prepare C-PEN@BT filled composite films using crystalline PEN as matrix and 4,4′-bis(3,4-dicyanophenoxy)biphenyl (BPH) as a novel cross-linking agent. The effects of both the surface modification of BT nanoparticles and matrix cross-linking on the mechanical, thermal and dielectric properties of PEN-based composites were investigated in detail. Compared with PEN-I film, the latter results showed that the strong interface interactions exerted between polymer matrix and CPEN layer on BT surface, especially the formation of cross-linking network across the PEN matrix, resulted in increased tensile strength and Young’ modulus by 29% and 32%, respectively. More importantly, the PEN/C-PEN@BT composite film shows stable dielectric properties in the temperature range of 20–204 °C, which is very close to the glass transition temperature.

Notes

Acknowledgements

The authors wish to thank for the Sichuan University of Science and Engineering Talent Introduction Project (No. 2016RCL35), Opening Project of Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities (2018JXY04) and Major Project of Education Department in Sichuan (18ZA0346).

References

  1. 1.
    X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, Prog. Mater. Sci. 100, 187–225 (2019)CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, L. Luo, H. Tang, Z. Zhou, G. Chen, Q. Li, J. Appl. Polym. Sci. 135, 46299 (2018)CrossRefGoogle Scholar
  3. 3.
    A. Tyagi, K. Tripathi, R. Gupta, J. Mater. Chem. A 3, 22507–22541 (2015)CrossRefGoogle Scholar
  4. 4.
    V. Thakur, R. Gupta, Chem. Rev. 116, 4260–4317 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Xie, X. Huang, K. Yang, S. Li, P. Jiang, J. Mater. Chem. A 2, 5244–5251 (2014)CrossRefGoogle Scholar
  6. 6.
    G. Chen, X. Lin, J. Li, J. Fisher, Y. Zhang, S. Huang, X. Cheng, Ceram. Int. 44, 15331–15337 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Feng, X. Huang, H. Tang, X. Liu, Colloids Surf. A 441, 556–564 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Singh, N. Singh, A. Garg, R. Gupta, Compos. Sci. Technol. 174, 158–168 (2019)Google Scholar
  9. 9.
    Z. Pu, L. Tong, M. Feng, K. Jia, X. Liu, RSC Adv. 5, 72028–72036 (2015)CrossRefGoogle Scholar
  10. 10.
    L. Hu, J. Zhong, Y. Tian, X. Zheng, J. Cheng, Z. Pu, J. Mater. Sci. 30, 221–229 (2019)Google Scholar
  11. 11.
    L. Tong, M. Liu, Y. Long, X. Liu, J. Appl. Polym. Sci. 131, 40418 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Yang, X. Huang, Y. Huang, L. Xie, P. Jiang, Chem. Mater. 25, 2327–2338 (2013)CrossRefGoogle Scholar
  13. 13.
    R. Wei, F. Jin, C. Long, X. Liu, High Perform. Polym. 29, 441–449 (2016)CrossRefGoogle Scholar
  14. 14.
    X. Huang, M. Feng, X. Liu, RSC Adv. 4, 4985–4992 (2014)CrossRefGoogle Scholar
  15. 15.
    T. Lu, M. Jiang, Z. Jiang, D. Hui, Z. Zhou, Compos. B 51, 28–34 (2013)CrossRefGoogle Scholar
  16. 16.
    M. Tchoul, S. Fillery, H. Koerner, L. Drummy, F. Oyerokun, P. Mirau, M. Durstock, R. Vaia, Chem. Mater. 22, 1749–1759 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Jung, J. Kang, S. Yang, J. Won, Y. Kim, Chem. Mater. 22, 450–456 (2010)CrossRefGoogle Scholar
  18. 18.
    X. Huang, P. Jiang, Adv. Mater. 27, 546–554 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Tang, P. Wang, P. Zheng, X. Liu, Compos. Sci. Technol. 123, 134–142 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Zhan, S. He, X. Wan, S. Zhao, Y. Bai, J. Membr. Sci. 567, 76–88 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, T. Cheng, X. Zhang, W. Zhang, X. Liu, Polymer 149, 305–315 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Wan, Y. Zhan, G. Zeng, Y. He, Appl. Surf. Sci. 393, 1–10 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Wei, L. Tu, Y. You, C. Zhan, Y. Wang, X. Liu, Polymer 161, 162–169 (2019)CrossRefGoogle Scholar
  24. 24.
    Z. Pu, X. Huang, L. Chen, J. Yang, H. Tang, X. Liu, J. Mater. Sci. 24, 2913–2922 (2013)Google Scholar
  25. 25.
    Z. Wang, K. Jia, X. Liu, J. Mater. Sci. 26, 8008–8016 (2015)Google Scholar
  26. 26.
    Z. Pu, X. Zheng, Y. Tian, L. Hu, J. Zhong, Polymers 9, 596 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Tang, X. Huang, X. Yang, J. Yang, R. Zhao, X. Liu, Mater. Lett. 75, 218–220 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Xie, Y. Yu, Y. Feng, W. Jiang, Z. Zhang, ACS Appl. Mater. Interfaces 9, 2995–3005 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Yang, R. Wei, K. Li, L. Tong, K. Jia, X. Liu, Sci. Rep. 6, 36434 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Material Corrosion and Protection Key Laboratory of Sichuan province, Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial UniversitiesSichuan University of Science & EngineeringZigongChina

Personalised recommendations