Advertisement

Co-precipitation synthesis and photoluminescence properties of (GdxLa1-x) PO4:5 at.%Eu3+ orange-red emitting phosphors

  • Shakir Ullah
  • Yuanquan Feng
  • Min Zhu
  • Huilin Kong
  • Shijia Sun
  • Chao Dou
  • Fei Zheng
  • Jie Tang
  • Degao ZhongEmail author
  • Bing TengEmail author
Article

Abstract

Orange-red light emitting Eu3+ (5 at.%) doped GdxLa1−xPO4 (x = 1.0, 0.9, 0.7, 0.5, 0.3, 0.1, 0.0) phosphors with various concentrations were synthesized via chemical co-precipitation method at a calcination temperature of 1000 °C for 5 h was presented. The synthesized phosphors were characterized via XRD, PL, FT-IR, SEM and CIE respectively. The XRD analysis confirms that the prepared phosphors in a monazite monoclinic system with a space group P21/n(14). The PL spectra of (GdxLa1−x)PO4:0.05%Eu3+ phosphors were measured at 250 nm excitation wavelength. The most dominant emission peak of Eu3+ for 5D0 → 7F1 transition located at 597 nm, which is magnetic dipole transition, is responsible for emission of orange-red light. The SEM was carried out to understand the surface morphological feature and grain sizes. According to the experimental outcome, it was indicated that these phosphors have appropriate CIE, suitable color correlated temperature parameter, valuable life-time, and appreciable purity of color, which comparable with the reported rear-earth ions doped orange-red light phosphors. The results show that these orange-red emitting phosphors may have a potential application on the white light-emitting diode and other related electronic systems, which is observing the picture in orange-red color.

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 11204148 and 11374170), major basic research projects of Shandong Natural Science Foundation (ZR2018ZB0650), China Postdoctoral Science Foundation (Grant No. 2015M580573), the Applied Basic Research Programs for Youths of Qingdao (Grant No. 15-9-1-52-JCH) and the Qingdao Postdoctoral Application Research Project (Grant no. 2015127) are gratefully acknowledged. The author also would like to thank the support of Taishan Scholar Program of Shandong Province.

References

  1. 1.
    K. Li, M.M. Shang, Y. Zhang, J. Fan, H.Z. Lian, J. Lin, Photoluminescence properties of single component white-emittingCa9 Bi(PO4)7:Ce3+, Tb3+, Mn2+ phosphors for UV LEDs. J. Mater. Chem. C 3, 7096–8014 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Haase, K. Riwotzki, H. Meyssamy, A. Kornowski, Synthesis and properties of colloidal lanthanide-doped nanocrystals. J. Alloys Compd. 303–304, 191–197 (2000)CrossRefGoogle Scholar
  3. 3.
    M. Kalidasan, K. Asokan, R. Dhanasekaran, Luminescence properties of 100 M eV W8+ ion irradiated GdCa4O(BO3)3:Eu3+ and GdCa4O(BO3)3:Tb3+ phosphors. J. Lumin. 180, 241–250 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Peng, Y. Sun, L. Zhao, Y. Wu, W. Feng, Y. Gao, F. Li, Polyphosphoric acid capping radioactive/up converting NaLuF4:Yb, Tm, 153Sm nanoparticles for blood pool imaging in vivo. Biomaterials 34, 9535–9544 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Li, G. Yu, Y. Liang, N. Zhang, Y. Liu, S. Gan, Morphology-controllable synthesis of LaOF: Ln3+ (Ln = Eu, Tb) crystals with multicolor luminescence properties. J. Colloid Interfaces Sci. 460, 273–280 (2015)CrossRefGoogle Scholar
  6. 6.
    E. Pavitra, G.S.R. Raju, P. Wook, J.S. Yu, Concentration and penetration depth dependent tunable emissions from Eu3+ co-doped SrY2O4:Dy3+ nanocrystalline phosphor. New J. Chem. 38, 163–169 (2014)CrossRefGoogle Scholar
  7. 7.
    Z.-H. Ju, R.-P. Wei, J.-X. Ma, C.-R. Pang, W.-S. Liu, A novel orange emissive phosphor SrWO4: Sm3+ for white light emitting diodes. J. Alloys Compd. 507, 133–136 (2010)CrossRefGoogle Scholar
  8. 8.
    J.K. Sheu, S.J. Chang, C.H. Kuo, Y.K. Su, L.W. Wu, Y.C. Lin, W.C. Lai, J.M. Tsai, G.C. Chi, R.K. Wu, White-light emission from near UV InGaN–GaN LED chip precoated with blue/green/red phosphors. IEEE Photonics Technol. Lett. 15, 18–20 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Cao, C. Cao, X. Yu, W. Li, J. Qiu, Photoluminescence of Sr2P2O7: Sm3+ phosphor as reddish orange emission for white light-emitting diodes. Int. J. Appl. Ceram. Technol. 12, 755–759 (2015)CrossRefGoogle Scholar
  10. 10.
    G.M. Cai, F. Zheng, D.Q. Yi, Z.P. Jin, X.L. Chen, New promising phosphor Ba3InB9O18 activated by Eu3+/Tb3+. J. Lumin. 130, 910–916 (2010)CrossRefGoogle Scholar
  11. 11.
    G.D. Gilliland, R.C. Powell, L. Esterowitz, Spectral and up-conversion dynamics and their relationship to the laser properties of BaYb2F8: Ho3+. Phys. Rev. B 38, 9958 (1988)CrossRefGoogle Scholar
  12. 12.
    P. Dorenbos, Systematic behaviourin trivalent lanthanide charge transfer energies. J. Phys. 15, 8417–8434 (2003)Google Scholar
  13. 13.
    G. Wakefield, E. Holland, P.J. Dobson, J.L. Hutchison, Luminescence properties of nanocrystalline Y2O3: Eu3+. Adv. Mater. 13, 1557–1560 (2001)CrossRefGoogle Scholar
  14. 14.
    F.C. Palilla, A.K. Levine, YVO4: Eu3+: a high efficient, red-emitting phosphor for high pressure mercury lamps. Appl. Opt. 5, 1467–1468 (1966)CrossRefGoogle Scholar
  15. 15.
    Z.Y. Mao, Y.C. Zhu, L. Gan, Y. Zeng, F.F. Xu, Y. Wang, H. Tian, J. Li, D.J. Wang, Tricolor emission Ca3Si2O7: Ln (Ln = Ce, Tb, Eu) phosphors for near-UV white light-emitting-diode. J. Lumin. 134, 148–153 (2013)CrossRefGoogle Scholar
  16. 16.
    B.V. Ratnam, M. Jayasimhadri, G. Bhaskar Kumar, K. Jang, S.S. Kim, Y.I. Lee, J.M. Lim, D.S. Shin, T.K. Song, Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV-based LEDs. J. Alloys Compd. 564, 100–104 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Meyssamy, K. Riwotzki, A. Kornowski, S. Naused, M. Hasse, Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb. Adv. Mater. 11, 840 (1999)CrossRefGoogle Scholar
  18. 18.
    N.K. Sahu, R.S. Ningthoujam, D. Bahadur, Disappearance and recovery of luminescence in GdPO4:Eu3+ nanorods: propose to water/OH· release under near infrared and gamma irradiations. J. Appl. Phys. 112, 1–10 (2012).  https://doi.org/10.1063/1.4731644 Google Scholar
  19. 19.
    T. Grzyb, A. Gruszeczka, R.J. Wiglusz, Z. Sniadecki, B. Idzikowskic, S. Lisa, J. Mater. Chem. 22, 22989 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Che, X. Zhu, P. Liu, Y. Duan, H. Wang, Q. Zhang, Y. Li, A facile aqueous strategy for the synthesis of high-brightness LaPO4:Eu3+ nanocrystals via controlling the nucleation and growth process. J. Lumin. 153, 369–374 (2014)CrossRefGoogle Scholar
  21. 21.
    N. Huittinen, Y. Arinicheva, M. Schmidt, S. Neumeier, T. Stumpf, Using Eu3+ as an atomic probe to investigate the local environment in LaPO4, GdPO4 monazite end-members. J. Colloid Interface Sci. 483, 139–145 (2016)CrossRefGoogle Scholar
  22. 22.
    N. Huittinen, Y. Arinicheva, P. Kowalski, V. Vinograd, S. Neumeier, D. Bosbach, Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148–157 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Li, H. Lian, M. Shang, J. Lin, A novel greenish yellow orange red Ba3Y4O9:Bi3+, Eu3+ phosphor with efcient energy transfer for UV-LEDs. Dalton Trans. 44, 20542–20550 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Liu, Y. Luo, Z. Mao, L. Liao, Z. Xia, J. Mater. Chem. C. 2, 1619 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Lv, W. Lu, N. Guo, Y. Jia, Q. Zhao, M. Jiao, B. Shao, H. You, RSC Advances 3, 16034 (2013)CrossRefGoogle Scholar
  26. 26.
    D.F. Mullica, D.A. Grossie, L.A. Boatner, Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4. Inorg. Chim. Acta 109, 105–110 (1985)CrossRefGoogle Scholar
  27. 27.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiely, New York, 1976)Google Scholar
  28. 28.
    E.Y. Borovikova, V.S. Kurazhkovskaya, D.M. Bykov, A.I. Orlova, Infrared spectroscopy and the structure of La0.33Zr2(PO4)3-Yb0.33Zr2(PO4)3 solid solutions. J. Struct. Chem. 51, 40–44 (2010)CrossRefGoogle Scholar
  29. 29.
    A.A. Ansari, J.P. Labis, M. Aslam Manthrammel, Designing of luminescent GdPO4:Eu@LaPO4@SiO2 core/shell nanorods: synthesis, structural and luminescence properties. Solid State Sci. 71, 117–122 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Cybinska, M. Guzik, C. Lorbeer, E. Zych, Y. Guyot, G. Boulon, A.V. Mudring, Design of LaPO4: Nd3+ materials by using ionic liquids. Opt. Mater. 63, 76–87 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Fuks, S. Kaczmarek, M. Bosacka, EPR and IR investigations of some chromium (III) phosphate (V) compounds. Rev. Adv. Mater. Sci 23, 57–63 (2010)Google Scholar
  32. 32.
    S. Sisira, A. Dinu, T. Kukku, G. Vimal, P.M. Kamal, P.R. Biju, N.V. Unnikrishnan, J. Cyriac, Microstructural characterization and optical properties of green emitting hexagonal and monoclinic CePO4:Tb3+ nanocrystals. Mater. Res. Express 4, 025010 (2017)CrossRefGoogle Scholar
  33. 33.
    Z.J. Zhang et al., ̎Effect of Sm3 + concentration on the vibrational and Luminescent Properties of LaPO4̎. Mater. Sci. Forum 848, 482–488 (2016)CrossRefGoogle Scholar
  34. 34.
    N. Huittinen, Y. Arinicheva, P. Kowalski, V. Vinograd, S. Neumeier, D. Bosbach, Probing structural homogeneity of La1-xGdxPO4 monazite-type solid solutions by combined spectroscopic and computational studies. J. Nucl. Mater. 486, 148–157 (2017)CrossRefGoogle Scholar
  35. 35.
    N. Dacheux, V. Brandel, M. Genet, Synthesis and characterization of mixed valence uranium orthophosphate: U(UO2)(PO4)2. ChemInform (1995).  https://doi.org/10.1002/chin.199542023 Google Scholar
  36. 36.
    E.N. Silva, A.P. Ayala, I. Guedes, C.W.A. Paschoal, R.L. Moreira, C.K. Loong, L.A. Boatner, Opt. Mater. 29, 224–230 (2006)CrossRefGoogle Scholar
  37. 37.
    G.M. Begun, G.W. Beall, L.A. Boatner, W.J. Gregor, Raman spectra of the rare earth orthophosphates. J. Raman Spectrosc. 11, 273–278 (1981)CrossRefGoogle Scholar
  38. 38.
    M.S. Wickleder, Inorganic lanthanide compounds with complex anions. Chem. Rev. 102, 2011–2088 (2002)CrossRefGoogle Scholar
  39. 39.
    S. Qiang, In Proceeding of the Second international Conference on Rare Earth Development and Application, (International Academic Publications, Beijing, 1991), pp. 765–769Google Scholar
  40. 40.
    X. Wu, H. You, H. Cui, X. Zeng, G. Hong, C.-H. Kim, C.-H. Pyun, B.-Y. Yu, C.-H. Park, Vacuum ultraviolet optical properties of (La, Gd)PO4:RE 3 + (RE = Eu, Tb). J. Mater. Res. Bull. 37, 1531–1838 (2002)CrossRefGoogle Scholar
  41. 41.
    H.-S. Nalwa, L.S. Rohwer, Handbook of Luminescence, Display Materials, and Devices (American Scientific Publishers, California, 2003)Google Scholar
  42. 42.
    W.O. Milligan, D.F. Mullika, G.W. Beall, L.A. Boatner, Acta Crystallogr. C 39, 23 (1983)CrossRefGoogle Scholar
  43. 43.
    B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Photoluminescence in GdVO4:Bi3+, Eu3+ red phosphor. Appl. Phys. A 70, 39–45 (2000)CrossRefGoogle Scholar
  44. 44.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  45. 45.
    C.S. McCamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl. 17, 142–144 (1992)CrossRefGoogle Scholar
  46. 46.
    J. Zheng, Q. Cheng, S. Wu, Y. Zhuang, Z. Guo, Y. Lu, C. Chen, Mater. Chem. Phys. 165, 168 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of PhysicsUniversity-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao UniversityQingdaoChina
  2. 2.National Demonstration Center for Experiment Applied Physics Education (Qingdao University)QingdaoChina
  3. 3.Shandong Provincial University Key Laboratory of Optoelectrical Material Physics and DevicesQingdaoChina

Personalised recommendations