Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub-ppm level of hydrogen gas detection

  • Xi-Tao Yin
  • Wen-Dong Zhou
  • Jing LiEmail author
  • Pin Lv
  • Qi Wang
  • Dong Wang
  • Fa-yu Wu
  • Davoud DastanEmail author
  • Hamid Garmestani
  • Zhicheng Shi
  • Ştefan Ţălu


A wet chemical method was employed to prepare Au-loaded sensor using tin dioxide (SnO2) nanoparticles (NPs) which has excellent hydrogen (H2) gas sensing properties. The structural, compositional, morphological, and electrochemical properties of these materials are characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy and electrochemical workstation, respectively. The results show that the response time of Au-loaded sensor based on SnO2 NPs to 100 ppm H2 is 26 s at 350 °C, which is much shorter than that of the pristine SnO2 sensor. Meanwhile, the effect of operating temperature and Au loading on ‘n’ value (factor for evaluating sensitivity response) is studied and the results demonstrated that the Au-loaded sensor based on SnO2 NPs can detect H2 gas down to 0.4 ppm. Moreover, the Au-loaded sensor based on SnO2 NPs with an excellent selectivity to H2 gas against carbon monoxide, methane, and sulfur dioxide is illustrated in this paper, which indicates that the Au-loaded sensor using SnO2 NPs is a good candidate for practical H2 sensors and other industrial applications. Statistical analysis was performed on the FESEM images of sensors based on SnO2 NPs and 0.5 atomic (at)% Au-loaded SnO2 NPs. Roughness parameters were evaluated and a correlation was established between the morphology, topography and chemical composition of the samples.



The financial support provided by the National Natural Science Foundation of China (Grant Nos. 51774180, 51874169, 51634004), Basic Scientific Research Project of colleges and universities in Liaoning Province (Grant No. 2017LNQN18) and Natural Science Foundation of Liaoning Province (Grant No. 20180550802).


  1. 1.
    A. Katsuki, K. Fukui, H2 selective gas sensor based on SnO2. Sens. Actuators B 52, 30–37 (1998)CrossRefGoogle Scholar
  2. 2.
    D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by Sol-Gel technique. J. Mater. Mech. Manuf. 2(1), 21–24 (2014)Google Scholar
  3. 3.
    S. Abbasi, Investigation of the enhancement and optimization of the photocatalytic activity of modified TiO2 nanoparticles with SnO2 nanoparticles using statistical method. Mater. Res. Express 5, 066302–066313 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Dastan, S.L. Panahi, A.P. Yengantiwar, A.G. Banpurkar, Morphological and electrical studies of titania powder and films grown by aqueous solution method. Adv. Sci. Lett. 22(4), 950–953 (2016)CrossRefGoogle Scholar
  5. 5.
    X.-T. Yin, L. Tao, G.-C. Wang, Q. Zhou, W. He, Q. Wang, Effects of oxygen and carbon monoxide species on the gas sensing properties of SnO2 nanoparticles. J. Nanoelectron. Optoelectron. 12, 748–751 (2017)CrossRefGoogle Scholar
  6. 6.
    T. Zhang, L. Liu, Q. Qi, S.-C. Li, G.-Y. Lu, Development of microstructure In/Pd-doped SnO2 sensor for low level CO detection. Sens. Actuators B 139, 287–291 (2009)CrossRefGoogle Scholar
  7. 7.
    D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. 25, 3473–3479 (2014)Google Scholar
  8. 8.
    X.-T. Yin, L. Tao, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J. Alloys Compd. 727, 254–259 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Shimizu, T. Maekawa, Y. Nakamura, M. Egashira, Effects of gas diffusivity andreactivity on sensing properties of thick film SnO2-based sensors. Sens. Actuators B 46, 163–168 (1998)CrossRefGoogle Scholar
  10. 10.
    D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. Atomic Mol. Condens. Nano Phys. 2(2), 109–114 (2015)Google Scholar
  11. 11.
    Q. Zhou, L. Xu, A. Umar, W. Chen, R. Kumar, Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials. Sens. Actuators B 256, 656–664 (2018)CrossRefGoogle Scholar
  12. 12.
    M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles inchemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)CrossRefGoogle Scholar
  13. 13.
    D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Appl. Phys. A 123(699), 1–13 (2017)Google Scholar
  14. 14.
    Y.-H. Choi, M. Yang, S.-H. Hong, H2 sensing characteristics of highly textured Pd-doped SnO2 thin films. Sens. Actuators B 134, 117–121 (2008)CrossRefGoogle Scholar
  15. 15.
    S.L. Panahi, D. Dastan, N.B. Chaure, Characterization of zirconia nanoparticles grown by sol-gel method. Adv. Sci. Lett. 22(4), 941–944 (2016)CrossRefGoogle Scholar
  16. 16.
    X.-T. Yin, Q. Wang, C.-J. Xu, Z. Li, L. Tao, Gas absorption on nano-zinc oxide by electron transfer process. J. Nanoelectron. Optoelectron. 12, 1211–1214 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. 27, 12291–12296 (2016)Google Scholar
  18. 18.
    Z.J. Li, S.N. Yan, Z.L. Wu, Hydrogen gas sensor based on mesoporous In2O3 with fast response/recovery and ppb level detection limit. Int. J. Hydrog. Energy 43, 22746–22755 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Barsan, M. Hübner, U. Weimar, Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens. Actuators B 157, 510–517 (2011)CrossRefGoogle Scholar
  20. 20.
    L.K. Bagal, J.Y. Patil, I.S. Mulla, S.S. Suryavanshi, Influence of Pd-loading on gas sensing characteristics of SnO2 thick films. Ceram. Int. 38, 4835–4844 (2012)CrossRefGoogle Scholar
  21. 21.
    X.-T. Yin, L. Tao, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for low concentration hydrogen. J. Alloys Compd. 727, 254–259 (2017)CrossRefGoogle Scholar
  22. 22.
    X.-T. Yin, P. Lv, J. Li, Study on simultaneous detection of CO and H2 with (Pd, Fe)-modified SnO2 and Pt-loaded SnO2 sensors. J. Mater. Sci. 29, 18935–18940 (2018)Google Scholar
  23. 23.
    Q. Zhou, A. Umar, E.M. Sodki, A. Amine, L. Xu, Y. Gui, A.A. Ibrahim, R. Kumar, S. Baskoutas, Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sens. Actuators B 259, 604–615 (2018)CrossRefGoogle Scholar
  24. 24.
    Q. Zhou, C. Hong, Z. Li, S. Peng, G. Wu, Q. Wang, Q. Zhang, L. Xu, Facile hydrothermal synthesis and enhanced methane sensing properties of Pt-decorated ZnO nanosheets. J. Nanosci. Nanotechnol. 18, 3335–3340 (2018)CrossRefGoogle Scholar
  25. 25.
    Q.-Y. Zhang, Q. Zhou, X.-T. Yin, H.-C. Liu, W.-M. Tan, C. Tang, The effect of PMMA pore-forming on hydrogen sensing properties of porous SnO2 thick film sensor. Sci. Adv. Mater. 9, 1350–1355 (2017)CrossRefGoogle Scholar
  26. 26.
    X.-T. Yin, X.-M. Guo, Sensitivity and selectivity of (Au, Pt, Pd)-loaded and (In, Fe)-doped SnO2 sensors for H2 and CO detection. J. Mater. Sci. 25, 4960–4966 (2014)Google Scholar
  27. 27.
    Q. Zhou, L.N. Xu, A. Umar, W.G. Chen, R. Kumar, Pt nanoparticles decorated SnO2 nanoneedles for efficient CO gas sensing applications. Sens. Actuators B 256, 656–664 (2018)CrossRefGoogle Scholar
  28. 28.
    Q. Zhou, W. Chen, L. Xu, S. Peng, Hydrothermal synthesis of various hierarchical ZnO nanostructures and their methane sensing properties. Sensors 5, 6171–6182 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Abbasi, M. Hasanpour, The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. J. Mater. Sci. 28, 1307–1314 (2017)Google Scholar
  30. 30.
    S. Hoseinzadeh, R. Ghasemiasl, A. Bahari, A.H. Ramezani, n-type WO3 semiconductor as a cathode electrochromic material for ECD devices. J. Mater. Sci. 28, 14446–14452 (2017)Google Scholar
  31. 31.
    S.A.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl. Phys. A 124, 567 (2018)CrossRefGoogle Scholar
  32. 32.
    D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci. 28, 7784–7796 (2017)Google Scholar
  33. 33.
    A. Jafari, Z. Ghorannevis, M. Ghoranneviss, S. Karimi, Nitrogen ion bombardment of multilayer graphene films grown on Cu foil by LPCVD. Int. J. Mater. Res. 107, 177–183 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Wang, Z.-T. Zhao, Y.-J. Sun, P.-W. Li, J.-L. Ji, Y. Chen, W.-D. Zhang, J. Hu, Fabrication and gas sensing properties of Au-loaded SnO2 composite nanoparticles for highly sensitive hydrogen detection. Sens. Actuators B 240, 664–673 (2017)CrossRefGoogle Scholar
  35. 35.
    Gwyddion 2.53 software (Copyright © 2004-2007, 2009-2014 Petr Klapetek, David Nečas, Christopher Anderson). Accessed 4 Mar 2019.
  36. 36.
    ISO 25178-2: 2012, Geometrical product specifications (GPS)—surface texture: areal—Part 2: terms, definitions and surface texture parameters. Accessed 4 Mar 2019.
  37. 37.
    Ş. Ţălu, R.P. Yadav, A. Arman, A.G. Korpi, D. Sobola, M. Ţălu, S. Rezaee, A. Achour, S. Jurečka, M. Mardani, Analyzing the fractal feature of nickel thin films surfaces modified by low energy nitrogen ion. VIP 31, 30–35 (2019)CrossRefGoogle Scholar
  38. 38.
    X.-T. Yin, X.-M. Guo, Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B 200, 213–218 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xi-Tao Yin
    • 1
  • Wen-Dong Zhou
    • 1
  • Jing Li
    • 1
    Email author
  • Pin Lv
    • 1
  • Qi Wang
    • 1
  • Dong Wang
    • 1
  • Fa-yu Wu
    • 1
  • Davoud Dastan
    • 2
    Email author
  • Hamid Garmestani
    • 2
  • Zhicheng Shi
    • 3
  • Ştefan Ţălu
    • 4
  1. 1.The Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province and School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina
  2. 2.Department of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.School of Materials Science and EngineeringOcean University of ChinaQingdaoPeople’s Republic of China
  4. 4.Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI)Cluj-NapocaRomania

Personalised recommendations