Advertisement

Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection

  • An Sheng
  • Yaqi Yang
  • Wei Ren
  • Hongji DuanEmail author
  • Baoying Liu
  • Guizhe Zhao
  • Yaqing LiuEmail author
Article
  • 11 Downloads

Abstract

An efficiency electromagnetic interference (EMI) shielding composite with low microwave reflection was fabricated by introducing nickel coated ultrahigh molecular weight polyethylene particles (UHMWPE@Ni) into ground tire rubber (GTR) matrix. Chain-like carbon black (CB) aggregates in GTR domains connected discontinuous Ni layers to form a hybrid conductive network. The remarkable EMI shielding effectiveness (SE) and low reflection characteristics of GTR/UHMWPE@Ni composites were attributed to the well-connected Ni–CB hybrid conductive network with both magnetic hysteresis loss and electrical loss, and the multi-interfaces structure induced by the selectively distributed Ni layer at the interface between UHMWPE and GTR. With only 1.04 vol% Ni content, the EMI SE of GTR/UHMWPE@Ni composite reached 47.3 dB in X band. Because of the synergistic effect of the Ni–CB hybrid network, the power coefficient of reflectivity (R) of the composite was as low as 0.58. The result indicated that our work provided a feasible strategy to fabricate efficient electromagnetic shielding materials with low microwave reflection.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 21704070), Natural Science Foundation of Shanxi Province (Grant Nos. 201701D221089; 201801D121109), and the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant Nos. sklpme2017409; sklpme2018-4-35). We are also grateful for the support from Shanxi Province 1331 Project Key Innovation Team of Polymeric Functional New Materials, Shanxi Province Innovative Disciplinary Group of New Materials Industry, and Shanxi Province Patent Conversion Project (Grant No. 20171007).

References

  1. 1.
    B. Shen, W.T. Zhai, M.M. Tao, J.Q. Ling, W.G. Zheng, ACS Appl. Mater. Interfaces 5, 11383–11391 (2013)CrossRefGoogle Scholar
  2. 2.
    N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Adv. Mater. 26, 5480–5487 (2014)CrossRefGoogle Scholar
  3. 3.
    D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, Z.M. Li, Adv. Funct. Mater. 25, 559–566 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, J. Hao, Z. Huang, G. Zheng, K. Dai, C. Liu, C. Shen, Carbon 126, 360–371 (2018)CrossRefGoogle Scholar
  5. 5.
    X. Wei, X. Cao, Y. Wang, G. Zheng, K. Dai, C. Liu, C. Shen, Compos. Sci. Technol. 149, 166–177 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, F.Q. Gu, L.J. Ni, K. Liang, K. Marcus, S.L. Liu, F. Yang, J.J. Chen, Z.S. Feng, Nanoscale 9, 18318–18325 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Liu, H.B. Zhang, R. Sun, Y. Liu, Z. Liu, A. Zhou, Z.Z. Yu, Adv. Mater. 29, 1702367 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue, L. Zhou, Y. Pei, H. Zhang, Z. Zhang, Carbon 96, 768–777 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen, Y. Li, J. Zhang, Y. Song, Y. Qin, Nano. Res. 11, 530–541 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Xu, Y.F. Pan, W. Wei, G.S. Wang, A.C.S. Appl, Nano Mater. 1, 1116–1123 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Xu, Y. Yang, D.X. Yan, H. Duan, G. Zhao, Y. Liu, A.C.S. Appl, Mater. Interfaces 10, 19143–19152 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Zhu, Y. Yang, A. Sheng, H. Duan, G. Zhao, Y. Liu, Appl. Surf. Sci. 469, 1–9 (2019)CrossRefGoogle Scholar
  13. 13.
    Y. Zheng, Y. Li, Z. Li, Y. Wang, K. Dai, G. Zheng, C. Liu, C. Shen, Compos. Sci. Technol. 139, 64–73 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Li, Y. Xie, W. Lu, T.W. Chou, Carbon 129, 76–84 (2018)CrossRefGoogle Scholar
  15. 15.
    Y.J. Yim, K.Y. Rhee, S.J. Park, Compos. Part B 98, 120–125 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Xu, Y. Yang, H. Duan, J. Gao, D.X. Yan, G. Zhao, Y. Liu, Appl. Surf. Sci. 455, 856–863 (2018)CrossRefGoogle Scholar
  17. 17.
    B. Zhao, S. Wang, C. Zhao, R. Li, S.M. Hamidinejad, Y. Kazemi, C.B. Park, Carbon 127, 469–478 (2018)CrossRefGoogle Scholar
  18. 18.
    Y. Xu, Y. Yang, D. Yan, H. Duan, C. Dong, G. Zhao, Y. Liu, J. Mater Sci. 28, 9126–9131 (2017)Google Scholar
  19. 19.
    H. Duan, Y. Xu, D.X. Yan, Y. Yang, G. Zhao, Y. Liu, Mater. Lett. 209, 353–356 (2017)CrossRefGoogle Scholar
  20. 20.
    H.X. Zhu, Y.Q. Yang, H.J. Duan, G. Zhao, Y. Liu, J. Mater Sci. 30, 2045–2056 (2018)Google Scholar
  21. 21.
    H.J. Duan, H.X. Zhu, J.M. Yang, J.F. Gao, Y. Yang, G. Zhao, Y. Liu, Compos. Part A 118, 41–48 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Aoudia, S. Azem, N. Hocine, M. Gratton, V. Pettarin, S. Seghar, Waste Manag. 60, 471–481 (2017)CrossRefGoogle Scholar
  23. 23.
    B. Sripornsawat, S. Saiwari, S. Pichaiyut, C. Nakason, Eur. Polym. J. 85, 279–297 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Ramarad, M. Khalid, C.T. Ratnam, A.L. Chuah, W. Rashmi, Prog. Mater. Sci. 72, 100–140 (2015)CrossRefGoogle Scholar
  25. 25.
    L.C. Jia, Y.K. Li, D.X. Yan, Carbon 121, 267–273 (2017)CrossRefGoogle Scholar
  26. 26.
    J. Yang, Y. Yang, H. Duan, G. Zhao, Y. Liu, J. Mater. Sci. 28, 5925–5930 (2016)Google Scholar
  27. 27.
    E. Bilgili, A. Dybek, H. Arastoopour, B. Bernstein, J. Elastom. Plast. 35, 235–256 (2003)CrossRefGoogle Scholar
  28. 28.
    S. Tamura, K. Murakami, H. Kuwazoe, J. Appl. Polym. Sci. 28, 3467–3484 (1983)CrossRefGoogle Scholar
  29. 29.
    L.C. Jia, D.X. Yan, X. Liu, R.J. Ma, H. Wu, Z.M. Li, A.C.S. Appl, Mater. Interfaces. 14, 11941–11949 (2018)CrossRefGoogle Scholar
  30. 30.
    H.Z. Wan, L. Li, Y. Chen, J.L. Gong, M.Q. Duan, C. Liu, J. Zang, H. Wang, Electrochim. Acta 229, 380–386 (2017)CrossRefGoogle Scholar
  31. 31.
    H. Pang, L. Xu, D.X. Yan, Z.M. Li, Conductive polymer composites with segregated structures. Prog. Polym. Sci. 39, 1908–1933 (2014)CrossRefGoogle Scholar
  32. 32.
    L.C. Jia, D.X. Yan, C.H. Cui, X. Jiang, X. Ji, Z.M. Li, J. Mater. Chem. C 3, 9369–9378 (2015)CrossRefGoogle Scholar
  33. 33.
    K. Zhang, G.H. Li, L.M. Feng, N. Wang, J. Guo, K. Sun, K.X. Yu, J.B. Zeng, T. Li, Z. Guo, M. Wang, J. Mater. Chem. C 5, 9359–9369 (2017)CrossRefGoogle Scholar
  34. 34.
    M.H. Al-Saleh, U. Sundararaj, Carbon 47, 1738–1746 (2009)CrossRefGoogle Scholar
  35. 35.
    K. Zhang, H.O. Yu, K.X. Yu, Y. Gao, M. Wang, J. Li, S. Guo, Compos. Sci. Technol. 156, 136–143 (2018)CrossRefGoogle Scholar
  36. 36.
    J.F. Gao, J.C. Luo, L. Wang, X.W. Huang, H. Wang, X. Song, M.J. Hu, L.C. Tang, H.G. Xue, Chem. Eng. J. 364, 493–502 (2019)CrossRefGoogle Scholar
  37. 37.
    Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater. 26, 303–310 (2016)CrossRefGoogle Scholar
  38. 38.
    H.Y. Wu, L.C. Jia, D.X. Yan, J.F. Gao, X.P. Zhang, P.G. Ren, Z.M. Li, Compos. Sci. Technol. 156, 87–94 (2018)CrossRefGoogle Scholar
  39. 39.
    Z. Zeng, C. Wang, Y. Zhang, P. Wang, S.I. Shahabadi, Y. Pei, M. Chen, X. Lu, A.C.S. Appl, Mater. Interfaces 10, 8205–8213 (2018)CrossRefGoogle Scholar
  40. 40.
    F. Ren, D. Song, Z. Li, L. Jia, Y. Zhao, D. Yan, P. Ren, J. Mater. Chem. C 6, 1476–1486 (2018)CrossRefGoogle Scholar
  41. 41.
    B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, A.C.S. Appl, Mater. Interfaces 8, 28917–28925 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Key Laboratory of Functional Nanocomposites of Shanxi ProvinceNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.State Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduPeople’s Republic of China
  3. 3.Institute of Functional Polymer CompositesHenan UniversityKaifengPeople’s Republic of China

Personalised recommendations