Relaxor like colossal dielectric constant in CoWO4 and CoWO4/PbWO4 nanocomposites

  • M. Jeyakanthan
  • Uma SubramanianEmail author
  • R. B. Tangsali
  • Roshan Jose
  • K. Venkata Saravanan


Dielectric constant ε′ and dielectric loss ε″ were measured in the frequency range of 500 Hz–3 MHz from room temperature (RT) to 350 °C for CoWO4 and CoWO4/PbWO4 nanocomposites sintered at 600 °C. Dielectric constant was found to be higher for nanocomposite samples as compared to CoWO4 sample and was maximum for Pb/Co ratio optimal value of 0.028. Relaxor like anomaly and colossal dielectric constants were observed above RT due to Maxwell–Wagner effect without structural and phase transition of the materials. Relaxor like properties for these materials were confirmed by Vogel–Fulcher and modified Curie–Weiss laws. However the samples sintered at 1000 °C do not show relaxor like behaviour and exhibit low dielectric constant ε′ at RT as compared to those sintered at 600 °C. P–E curve depicts the weak ferroelectric nature of the samples.



The authors are extremely thankful to Prof. R. Wordenweber, Peter Grünberg Institute (PGI) and JARA-Fundamentals of Future Information Technology, Jülich, Germany and Dr. Bholanath Pahari, Department of Physics, Goa University for their valuable discussions about Vogel – Fulcher law analysis. Mr. Girish Prabhu of Geological oceanography division, NIO, Goa for XRD measurements. One of the authors M. Jeyakanthan is grateful to UGC, New Delhi, for providing BSR fellowship.

Supplementary material

10854_2019_1837_MOESM1_ESM.tif (76 kb)
Supplementary material 1 (TIFF 75 kb)


  1. 1.
    P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 12, 1–39 (2012)CrossRefGoogle Scholar
  2. 2.
    Y. Shanling, W. Zhang, G. Guangpeng, X. Hongchao, X. Dongyu, Structural design and properties of fine scale 2-2-2 PZT/epoxy piezoelectric composites for high frequency application. Ceram. Int. 44, 10940–10944 (2018)CrossRefGoogle Scholar
  3. 3.
    R.C. Pullar, S. Farrah, N.M. Alford, MgWO4, ZnWO4, NiWO4 and CoWO4 microwave dielectric ceramics. J. Eur. Cerem. Soc. 27, 1059–1063 (2007)CrossRefGoogle Scholar
  4. 4.
    A.D. Mani, I. Soibam, Dielectric, magnetic and optical properties of (Bi, Gd)FeO3–Ni0.8Zn0.2Fe2O4 nanocomposites. Ceram. Int. 44, 2419–2425 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, T. Wang, C. Wang, Y.J. Xiao, Mechanism of enhanced dielectric performance in Ba(Fe0.5Ta0.5)O3/poly(vinylidene fluoride) nanocomposites. Ceram. Int. 45, S244–S248 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Limpichaipanit, S. Somwan, A. Ngamjarurojan, Dielectric properties of PFN–PZT composites: From relaxor to normal ferroelectric behavior. Ceram. Int. 44, 14797–14802 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Li, M. Xu, Q. Zhang, P. Chen, N. Wang, D. Xiong, B. Peng, L. Liu, Electrocaloric effect in La doped BNT-6BT relaxor ferroelectric ceramics. Ceram. Int. 44, 343–350 (2018)CrossRefGoogle Scholar
  8. 8.
    G.K. Choi, J.R. Kim, S.H. Yoon, K.S. Hong, Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) AMoO4 compounds. J. Eur. Cerem. Soc. 27, 3063–3067 (2007)CrossRefGoogle Scholar
  9. 9.
    B. Wang, Y.B. Pu, N. Xu, H.D. Wu, K. Chen, Dielectric properties of barium titanate–molybdenum composite. Ceram. Int. 38S, S37–S40 (2012)CrossRefGoogle Scholar
  10. 10.
    R.A. Bharati, R.A. Singh, B.M. Wanklyn, On electrical transport in CoWO4 single crystals. J. Mater. Sci. 16, 775–779 (1981)CrossRefGoogle Scholar
  11. 11.
    S. Chen, G. Yang, Y. Jia, H. Zheng, Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem. 3, 1490–1496 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Ling, L.Q. Zhou, H. Jia, First-principles study of crystalline CoWO4 as oxygen evolution reaction catalyst. RSC Adv. 4, 24692 (2014)CrossRefGoogle Scholar
  13. 13.
    B. Zhang, L. Li, Microstructure and microwave dielectric properties of CuO-modified CoWO4 ceramics. J. Mater. Sci. Mater. Electron. 28, 3523–3529 (2017)CrossRefGoogle Scholar
  14. 14.
    P.K. Pandey, N.S. Bhave, R.B. Kharat, Characterization of spray deposited CoWO4 thin films for photovoltaic electrochemical studies. J. Mater. Sci. 42, 7927–7933 (2007)CrossRefGoogle Scholar
  15. 15.
    T. You, G. Cao, X. Song, C. Fan, W. Zhao, Z. Yin, S. Sun, Alcohol–thermal synthesis of flowerlike hollow cobalt tungstate nanostructures. Mater. Lett. 62, 1169–1172 (2008)CrossRefGoogle Scholar
  16. 16.
    S. Rajagopal, D. Nataraj, O.Y. Khyzhun, Y. Djaoued, J. Robichaud, D. Mangalaraj, Hydrothermal synthesis and electronic properties of FeWO4 and CoWO4 nanostructures. J. Alloys Compd. 493, 340–345 (2010)CrossRefGoogle Scholar
  17. 17.
    Z. Song, J. Ma, H. Sun, Y. Sun, J. Fang, Z. Liu, C. Gao, Y. Liu, J. Zhao, Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles. Mater. Sci. Eng. B 163, 62–65 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Ungelenk, M. Speldrich, R. Dronskowski, C. Feldmann, Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M = Mn, Fe Co, Ni, Cu, Zn). Solid State Sci. 31, 62–69 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Thongtem, S. Wannapop, T. Thongtem, Characterization of CoWO4 nano-particles produced using the spray pyrolysis. Ceram. Int. 35, 2087–2091 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Jeyakanthan, U. Subramanian, R.B. Tangsali, Enhanced photoluminescence of CoWO4 in CoWO4/PbWO4 nanocomposites. J. Mater. Sci. Mater. Electron. 29, 1914–1924 (2018)CrossRefGoogle Scholar
  21. 21.
    R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Relaxing with relaxors: a review of relaxor ferroelectrics. Adv. Phys. 60, 229–327 (2011)CrossRefGoogle Scholar
  22. 22.
    L.E. Cross, Relaxor ferroelectrics: an overview. Ferroelectrics 151, 305–320 (1994)CrossRefGoogle Scholar
  23. 23.
    L.E. Cross, Relaxor ferroelectrics. In: Piezoelectricity. Springer Series in Materials Science, (Springer, Berlin, 2008), p. 131Google Scholar
  24. 24.
    T. Maiti, R. Guo, A.S. Bhalla, Ferroelectric relaxor behaviour in Ba(ZrxTi1− x)O3:MgO composites. J. Phys. D Appl. Phys. 40, 4355 (2007)CrossRefGoogle Scholar
  25. 25.
    E.C. Cristina, M.N. Alexandra, V.P. Mihai, A. Mirela, T. Sorin, S. Giorgio, G. Carmen, M. Liliana, Ferroelectric and dielectric properties of ferrite-ferroelectric ceramic composites. J. Appl. Phys. 113, 074103 (2013)CrossRefGoogle Scholar
  26. 26.
    B. Asbani, Y. Gagou, M. Trcek, J.L. Dellis, M. Amjoud, A. Lahmar, D. Mezzane, Z. Kutnjak, E.L. Marssi, Dielectric permittivity enhancement and large electrocaloric effect in the lead free (Ba0.8Ca0.2)1−xLa2x/3TiO3 ferroelectric ceramics. J. Alloys Compd. 730, 501–508 (2018)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, Y.J. Xiao, T. Wang, Q.L. Wu, Enhanced dielectric properties of tungsten bronze Ba6FeNb9O30 prepared by microwave hydrothermal method. J. Alloys Compd. 740, 1077–1085 (2018)CrossRefGoogle Scholar
  28. 28.
    P.N. Pertsev, R.V. Gainutdinov, Y.V. Bodnarchuk, T.R. Volk, Blockage of domain growth by nanoscale heterogeneities in a relaxor ferroelectric Sr0.61Ba0.39Nb2O6. J. Appl. Phys. 117, 03410 (2015)CrossRefGoogle Scholar
  29. 29.
    R.B. Hilborn Jr., Maxwell Wagner polarization in sintered compacts of ferric oxide. J. Appl. Phy. 36, 1553 (1965)CrossRefGoogle Scholar
  30. 30.
    W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B 534, 17–21 (2018)CrossRefGoogle Scholar
  31. 31.
    E. Birks, M. Dunce, R. Ignatans, A. Plaude, M. Antonova, K. Kundzins, A. Sternberg, Structure and dielectric properties of Na0.5Bi0.5TiO3-CaTiO3 solid solutions. J. Appl. Phys. 119, 074102 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Ahmad, H.L. Irfan, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles. New J. Chem. 40, 3216–3224 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Tufiqjamil, J. Ahmad, M. Saleem, S.M. Ramay, Phonons lattice dynamics and transport properties of multiferroic LaFeO3. J. Ovonic Res. 12, 113–120 (2016)Google Scholar
  34. 34.
    P. Nayak, T. Badapanda, A.K. Singha, P. Simanchalo, An approach for correlating the structural and electrical properties of Zr4+ modified SrBi4Ti4O15/SBT ceramic. RSC Adv. 7, 16319 (2017)CrossRefGoogle Scholar
  35. 35.
    Samy A. Rahman, W.R. Agami, M.M. Eltabey, Frequency, temperature and composition dependence of dielectric properties of Nd3+ substituted Cu-Zn ferrites. Life Sci. J. 9, 1630–1634 (2012)Google Scholar
  36. 36.
    N. Ortega, A. Kumar, P. Bhattacharya, S.B. Majumder, R.S. Katiyar, Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films. Phys. Rev. B. 77, 014111 (2008)CrossRefGoogle Scholar
  37. 37.
    C.C. Wang, S.X. Dou, Pseudo-relaxor behaviour induced by Maxwell_Wagner relaxation. Solid State Commun. 149, 2017–2020 (2009)CrossRefGoogle Scholar
  38. 38.
    C.C. Wang, L.W. Zhang, Oxygen-vacancy-related dielectric anomaly in CaCu3Ti4O12: post-sintering annealing studies. Phys. Rev. B. 74, 024106 (2006)CrossRefGoogle Scholar
  39. 39.
    C.J. Huang, K. Li, S.Y. Wu, X.L. Zhu, X.M. Chen, Variation of ferroelectric hysteresis loop with temperature in (SrxBa1−x)Nb2O6 unfilled tungsten bronze ceramics. J. Materiomics. 1, 146–152 (2015)CrossRefGoogle Scholar
  40. 40.
    D.I. Woodward, R. Beanland, AgNb7O18: an ergodic relaxor ferroelectric. Inorg. Chem. 53, 8941–8948 (2014)CrossRefGoogle Scholar
  41. 41.
    P. Balaji, P. Mandal, Anithakumari, S. Nigam, C. Majumder, M. Mohapatra, A.K. Tyagi, Enhancement of dielectric constant in a niobium doped titania system: an experimental and theoretical study. New J. Chem. 40, 9526–9536 (2016)CrossRefGoogle Scholar
  42. 42.
    S.D. Mardolkar, A.V. Salker, Efficiently synthesized Co doped Cu3TeO6 accounted for its anomalous behaviour in electronic properties. New J. Chem. 41, 13974–13982 (2017)CrossRefGoogle Scholar
  43. 43.
    F. Orlandi, L. Righi, R. Cabassi, D. Delmonte, C. Pernechele, F. Bolzoni, F. Mezzadri, M. Solzi, M. Merlini, G. Calestani, Structural and electric evidence of ferrielectric state in Pb2MnWO6 double perovskite system. Inorg. Chem. 53, 10283–10290 (2014)CrossRefGoogle Scholar
  44. 44.
    Y. Matsumoto, T. Sasaki, J. Hombo, A new preparation method of LaCo0.3 perovskite using electrochemical oxidation. Inorg. Chem. 31, 738–741 (1992)CrossRefGoogle Scholar
  45. 45.
    N. Jianrong, L. Wei, D. Hongxing, H. Hong, Z. Xuehong, L. Peiheng, Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas. Chin. Sci. Bull. 51, 1673–1681 (2006)CrossRefGoogle Scholar
  46. 46.
    E.S. Kim, C.J. Jeon, P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO4 (A = Ni, Mg, Zn and B = Mo, W) ceramics. J. Am. Ceram. Soc. 95, 2934–2938 (2012)CrossRefGoogle Scholar
  47. 47.
    S. Mukherjee, C.H. Chen, C.C. Chou, K.F. Tseng, B.K. Chaudhuri, H.D. Yang, Colossal dielectric and magnetodielectric effect in Er2O3 nanoparticles embedded in a SiO2 glass matrix. Phys. Rev. B. 82, 104107 (2010)CrossRefGoogle Scholar
  48. 48.
    A.V. Kalgin, S.A. Gridnev, Crossover from ordinary to relaxor ferroelectric state in particulate magnetoelectric composites (x)Mn0.4Zn0.6Fe2O4–(1−x)PbZr0.53Ti0.47O3. Ferroelectrics 501, 100–108 (2016)CrossRefGoogle Scholar
  49. 49.
    I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids. 61, 197–208 (2000)CrossRefGoogle Scholar
  50. 50.
    Biljana Stojanovic, Magnetic, Ferroelectric and Multiferroic Metal Oxides, 1st edn. (Elsevier, Amsterdam, 2018), pp. 233–245Google Scholar
  51. 51.
    R. Wordenweber, J. Schwarzkopf, E. Hollmann, A. Duk, B. Cai, Impact of compressive in-plane strain on the ferroelectric properties of epitaxial NaNbO3 films on (110) NdGaO3. Appl. Phys. Lett. 103, 132908 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsGoa UniversityTaleigao PlateauIndia
  2. 2.Department of PhysicsCentral University of Tamil NaduThiruvarurIndia

Personalised recommendations