Luminescence enhancement for Y2Mo4O15:Pr3+ red-emitting phosphors by Tb3+ co-doping

  • Guilin Yan
  • Wentao ZhangEmail author
  • Yi HuangEmail author
  • Peicong Zhang
  • Junfeng Li


A series of Y2Mo4O15:Pr3+, Tb3+ red-emitting phosphors is synthesized via a solid-state reaction. The X-ray diffraction results indicate that the patterns of Y2Mo4O15:Pr3+, Tb3+ samples match well with the standard Y2Mo4O15 monoclinic structure. Under blue excitation at 453 nm, the Y2Mo4O15:Pr3+ phosphors show a red emission peaked at 614 nm, corresponding to the characteristic 1D2 → 3H4 electronic transition of Pr3+. Under near-ultraviolet excitation at 375 nm, the Y2Mo4O15:Tb3+ phosphor results in a double emission at 552 nm and 490 nm, which corresponding to the 5D4 → 7F5 and 5D4 → 7F6 electronic transitions of Tb3+. Furthermore, the luminescence properties of Y2Mo4O15:Pr3+ phosphor, especially luminescence intensity, was observably improved by the Tb3+ co-doping, which due to the emission peak of Tb3+ matches well with the excitation peak of Pr3+ at 490 nm and the resulted energy transfer between Tb3+ and Pr3+. The chromaticity coordinates of Y2Mo4O15:Pr3+, Tb3+ phosphors are all located in the red region. The results indicate that the prepared Y2Mo4O15:Pr3+, Tb3+ red phosphors are suitable for the applications of blue-excited warm white light-emitting diodes.



This work was financially supported by the National Natural Science Foundation of China (Grant No. 51602032, 41673109), the Research Project of Science & Technology Department of Sichuan Province (No. 2017SZ0185) and the Project of Chengdu University of Technology Innovation Team (Grant No. 10912-KYTD201506).


  1. 1.
    P. Chen, D. Yang, W. Hu, J. Zhang, Y. Wu, Photoluminescence properties and structure of double perovskite Ba2ZnWO6:Eu3+, Li+ as a novel red emitting phosphor. Chem. Phys. Lett. 689, 169–173 (2017)CrossRefGoogle Scholar
  2. 2.
    K.V. Dabre, K. Park, S.J. Dhoble, Synthesis and photoluminescence properties of microcrystalline Sr2ZnWO6:RE3+ (RE = Eu, Dy, Sm and Pr) phosphors. J. Alloys Compd. 617, 129–134 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Balakrishna, O.M. Ntwaeaborwa, Study of luminescent behavior and crystal defects of different MNa[PO4]-Dy3+ phosphors (M = Mg, Ca, Sr and Ba). Sens. Actuators B 242, 305–317 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Li, C. Shen, White LED based on nano-YAG:Ce3+/YAG:Ce3+, Gd3+ hybrid phosphors. Optik 123, 621–623 (2012)CrossRefGoogle Scholar
  5. 5.
    H.J. Yu, K. Park, W. Chung, J. Kim, S.H. Kim, White light emission from blue InGaN LED precoated with conjugated copolymer/quantum dots as hybrid phosphor. Synth. Met. 159, 2474–2477 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Zhang, Y. Wang, Y. Gao, J. Long, J. Li, Sol-gel assisted synthesis and photoluminescence property of Sr2Si5N8:Eu2+, Dy3+ red phosphor for white light emitting diodes. J. Alloy. Compd. 667, 341–345 (2016)CrossRefGoogle Scholar
  7. 7.
    L.-J. Yin, C. Cai, H. Wang, Y.-J. Zhao, H.V. Bui, X. Jian, H. Tang, X. Wang, L.-J. Deng, X. Xu, M.-H. Lee, Luminescent properties and microstructure of SiC doped AlON:Eu2+ phosphors. J. Alloys Compd. 725, 217–226 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Wang, S.-H. Zhang, Q.-Q. Zhu, Z.-W. Zhang, L. Zhang, X. Wang, L.-B. Zhang, Y.-J. Zhao, X. Xu, L.-J. Yin, Eu sites in Eu-doped AlON phosphors: anomalous Eu occupancy layers. J. Phys. Chem. C 123, 3110–3114 (2019)CrossRefGoogle Scholar
  9. 9.
    C. Hecht, F. Stadler, P.J. Schmidt, J.S. auf der Guenne, V. Baumann, W. Schnick, SrAlSi4N7:Eu2+-a nitridoalumosilicate phosphor for warm white light (pc)LEDs with edge-sharing tetrahedra. Chem. Mater. 21, 1595–1601 (2009)CrossRefGoogle Scholar
  10. 10.
    A. Garcia-Murillo, F.D. Carrillo-Romo, J. Oliva-Uc, T.A. Esquivel-Castro, S.D. de La Torre, Effects of Eu content on the luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels. Ceram. Int. 43, 12196–12204 (2017)CrossRefGoogle Scholar
  11. 11.
    Y. Kojima, A. Takahashi, T. Umegaki, Synthesis of orange-red-emitting Eu2+, Pr3+ codoped SrS long afterglow phosphor. J. Lumin. 146, 42–45 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid State Lett. 9, H22–H25 (2006)CrossRefGoogle Scholar
  13. 13.
    X. He, M. Guan, N. Lian, J. Sun, T. Shang, Synthesis and luminescence characteristics of K2Bi(PO4)(MO4):Eu3+ (M = Mo, W) red-emitting phosphor for white LEDs. J. Alloy. Compd. 492, 452–455 (2010)CrossRefGoogle Scholar
  14. 14.
    F. Mo, L. Zhou, Q. Pang, F. Gong, Z. Liang, Potential red-emitting NaGd(MO4)2: R (M = W, Mo, R = Eu3+, Sm3+, Bi3+) phosphors for white light emitting diodes applications. Ceram. Int. 38, 6289–6294 (2012)CrossRefGoogle Scholar
  15. 15.
    G. Benoît, J. Véronique, A. Arnaud, G. Alain, Luminescence properties of tungstates and molybdates phosphors: illustration on ALn(MO4)2 compounds (A = alikaline cation, Ln = lanthanides, M = W, Mo). Solid State Sci. 13, 460–467 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Pandey, V. Kumar Rai, V. Kumar, V. Kumar, H.C. Swart, Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: an optical heating phosphor. Sens. Actuat. B 209, 352–358 (2015)CrossRefGoogle Scholar
  17. 17.
    P.V. Tumrama, P.R. Kautkara, S.P. Wankhedeb, S.V. Moharil, NIR emitting Bi2MoO6:Nd3+/Yb3+ phosphor as a spectral converter for solar cells. J. Lumin. 206, 39–45 (2019)CrossRefGoogle Scholar
  18. 18.
    K. Li, R.V. Deun, Photoluminescence and energy transfer properties of a novel molybdate KBaY(MoO4)3:Ln3+ (Ln3+ = Tb3+, Eu3+, Sm3+, Tb3+/Eu3+, Tb3+/Sm3+) as a multi-color emitting phosphor for UV w-LEDs. Dalton Trans. 47, 6995–7004 (2018)CrossRefGoogle Scholar
  19. 19.
    A.I. Becerro, M. Allix, M. Laguna, D. González-Mancebo, C. Genevois, A. Caballero, G. Lozano, N.O. Núñez, M. Ocaña, Revealing the substitution mechanism in Eu3+:CaMoO4 and Eu3+, Na+:CaMoO4 phosphors. J. Mater. Chem. C 6, 12830–12840 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Liu, H. Lian, C. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+. Opt. Mater. 29, 1591–1594 (2007)CrossRefGoogle Scholar
  21. 21.
    G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou, X. Xu, Hydrothermal synthesis and luminescent properties of NaLa(MoO4)2:Eu3 + , Tb3 + phosphors. J. Alloy. Compd. 550, 1–8 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Tian, X. Qi, X. Wu, R. Hua, B. Chen, Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J. Phys. Chem. C 113, 10767–10772 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Balakrishna, V. Kumar, A. Kumar, O.M. Ntwaeaborwa, Structural and photoluminescence features of Pr3+-activated different alkaline sodium-phosphate-phosphors. J. Alloys Compd. 686, 533–539 (2016)CrossRefGoogle Scholar
  24. 24.
    S.N. Ogugua, H.C. Swart, O.M. Ntwaeaborwa, The dynamics of the photoluminescence of Pr3+ in mixed lanthanum yttrium oxyorthosilicate hosts. Sens. Actuat. B 250, 285–299 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Zhang, L. Wang, Y. Jin, X. Zhang, Z. Hao, X. Wang, Energy transfer in Y3Al5O12:Ce3+, Pr3+ and CaMoO4:Sm3+, Eu3+ phosphors. J. Lumin. 131, 429–432 (2011)CrossRefGoogle Scholar
  26. 26.
    X. He, M. Guan, Z. Li, T. Shang, N. Lian, Q. Zhou, Enhancement of fluorescence from BaMoO4:Pr3+ deep-red-emitting phosphor via codoping Li+ and Na+ ions. J. Am. Ceram. Soc. 94, 2483–2488 (2011)CrossRefGoogle Scholar
  27. 27.
    H. Deng, Z. Zhao, J. Wang, Z. Hei, M. Li, H.M. Noh, J.H. Jeong, R. Yu, Photoluminescence properties of a new orange–red emitting Sm3+-doped Y2Mo4O15 phosphor. J. Solid State Chem. 228, 110–116 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Janulevicius, P. Marmokas, M. Misevicius, J. Grigorjevaite, L. Mikoliunaite, S. Sakirzanovas, A. Katelnikovas, Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics. Sci. Rep. 6, 26098 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, X. Liu, L. Jing, P. Niu, Tunable white light and energy transfer of Dy3+ and Eu3+ doped Y2Mo4O15 phosphors. Ceram. Int. 42, 13004–13010 (2016)CrossRefGoogle Scholar
  30. 30.
    B. Li, X. Huang, H. Guo, Y. Zeng, Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigments 150, 67–72 (2018)CrossRefGoogle Scholar
  31. 31.
    K. Thomas, D. Alexander, S. Sisira, S. Gopi, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors. Opt. Mater. 80, 37–46 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Xiong, Y. Zhang, Y. Liu, T. Gao, L. Zhang, Z.-A. Qiao, L. Zhang, S. Gan, Q. Huo, Self-template construction of honeycomb-like mesoporous YPO4:Ln3+ (Ln = Eu, Tb) phosphors with tuneable luminescent properties. J. Alloys Compd. 782, 845–851 (2019)CrossRefGoogle Scholar
  33. 33.
    I. Mackeviciute, A. Linkeviciute, A. Katelnikovas, Synthesis and optical properties of Y2Mo4O15 doped by Pr3+. J. Lumin. 190, 525–530 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Naruke, T. Yamase, Structural investigation of R2Mo4O15 (R = La, Nd, Sm), and polymorphs of the R2Mo4O15 (R = rare earth) family. J. Solid State Chem. 173, 407–417 (2003)CrossRefGoogle Scholar
  35. 35.
    L. Cheng, W. Zhang, Y. Li, S. Dai, X. Chen, K. Qiu, Synthesis and photoluminescence properties of Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) red phosphors for white light-emitting diodes. Ceram. Int. 43, 11244–11249 (2017)CrossRefGoogle Scholar
  36. 36.
    Y. Shen, K. Qiu, J. Wang, W. Zhang, Q. Tang, Synthesis of Dy3+ co-doped Bi4Si3O12:Sm3+ phosphors with enhanced red-emitting properties. Ceram. Int. 43, 15946–15951 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Shen, K. Qiu, W. Zhang, Y. Zeng, Red-emitting enhancement of Bi4Si3O12:Sm3+ phosphor by Pr3+ co-doping for white LEDs application. Ceram. Int. 43, 9158–9163 (2017)CrossRefGoogle Scholar
  38. 38.
    G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968)CrossRefGoogle Scholar
  39. 39.
    D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  40. 40.
    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  41. 41.
    M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, Sol–gel synthesis and photoluminescent properties of LaPO4: a (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J. Mater. Chem. 13, 1413–1419 (2003)CrossRefGoogle Scholar
  42. 42.
    S. Li, Q. Meng, S. Lü, W. Sun, Optical properties of Sm3+ and Tb3+ co-doped CaMoO4 phosphor for temperature sensing. Spectrochim. Acta A 214, 537–543 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water PollutionChengdu University of TechnologyChengduChina
  3. 3.College of Environment and EcologyChengdu University of TechnologyChengduChina

Personalised recommendations