Advertisement

Influence of cadmium precursor concentration on the material and electronic properties of electrochemically grown cadmium telluride

  • A. A. OjoEmail author
  • A. O. Ojo
  • O. J. Femi-Jemilohun
  • A. Adebayo
  • D. O. Akindele
Article
  • 5 Downloads

Abstract

The structural, optical, morphological, compositional and electronic properties of a two-electrode electroplated cadmium telluride (CdTe) deposited from electrolytic baths with different Cd-precursor concentrations was investigated. The XRD shows the formation of dominant cubic (111) CdTe at 2θ = ~24.0°. The presence of hexagonal (101)Te was observed for the as-deposited layer grown from the 0.5 M Cd-precursor electrolyte. Improvement in the crystallite size, micro-strain and dislocation density was recorded with increasing Cd-precursor which peaks at 1.5 M Cd-precursor concentration. Further improvement was also recorded after CdCl2 post-growth treatment. The bandgap energy of the films increased from (1.20 to 1.52) eV with an increase in the Cd-precursor concentration. The energy bandgap of the films tend towards the ideal bulk CdTe bandgap of 1.45 eV after CdCl2-treatment. Topologically, the SEM micrographs reveal that beyond 0.5 M Cd-precursor concentration, the underlying substrate becomes fully covered with CdTe thin-films and the formation of curly floral-like agglomerations is exhibited. The electrical properties of the deposited CdTe thin films were correlated to the Cd-precursor concentration, as a transition from p-type to n-type electrical conduction were recorded with increasing Cd-precursor concentration from 0.5 M.

Notes

Acknowledgment

The main author would like to thank the Materials and Engineering Research Institute (MERI), Sheffield Hallam University (SHU), UK, for the facilities made available for the work reported in this paper. The authors would like to acknowledge Prof. Dharmadasa and other members of the SHU Solar Energy Group for their contributions. The main author wishes to also thank Ekiti State University (EKSU), Ado Ekiti, Nigeria, for their support.

References

  1. 1.
    A.M. Omer, Energy use and environmental impacts: a general review. J. Renew. Sustain. Energy 1, 053101 (2009).  https://doi.org/10.1063/1.3220701 CrossRefGoogle Scholar
  2. 2.
    N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006).  https://doi.org/10.1073/pnas.0603395103 CrossRefGoogle Scholar
  3. 3.
    S. Jiménez Sandoval, M. Meléndez Lira, I. Hernández Calderón, Crystal structure and energy gap of CdTe thin films grown by radio frequency sputtering. J. Appl. Phys. 72(9), 4197–4202 (1992)CrossRefGoogle Scholar
  4. 4.
    C. Heisler, M. Brückner, F. Lind, C. Kraft, U. Reislöhner, C. Ronning, W. Wesch, CdTe grown under Cd/Te excess at very low temperatures for solar cells. J. Appl. Phys. 113, 224504 (2013).  https://doi.org/10.1063/1.4809761 CrossRefGoogle Scholar
  5. 5.
    A.A. Ojo, W.M. Cranton, I.M. Dharmadasa, Next generation multilayer graded bandgap solar cells (Springer International Publishing, Cham, 2019)CrossRefGoogle Scholar
  6. 6.
    A. Romeo, S. Buecheler, M. Giarola, G. Mariotto, A.N. Tiwari, N. Romeo, A. Bosio, S. Mazzamuto, Study of CSS- and HVE-CdTe by different recrystallization processes. Thin Solid Films 517, 2132–2135 (2009).  https://doi.org/10.1016/j.tsf.2008.10.129 CrossRefGoogle Scholar
  7. 7.
    A.A. Ojo, I.M. Dharmadasa, 15.3% efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016)CrossRefGoogle Scholar
  8. 8.
    J.M. Burst, J.N. Duenow, D.S. Albin, E. Colegrove, M.O. Reese, J.A. Aguiar, C.-S. Jiang, M.K. Patel, M.M. Al-Jassim, D. Kuciauskas, S. Swain, T. Ablekim, K.G. Lynn, W.K. Metzger, CdTe solar cells with open-circuit voltage breaking the 1 V barrier. Nat. Energy 1, 16015 (2016).  https://doi.org/10.1038/nenergy.2016.15 CrossRefGoogle Scholar
  9. 9.
    H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne, I.M. Dharmadasa, An investigation into the effect of rate of stirring of bath electrolyte on the properties of electrodeposited CdTe thin film semiconductors. J. Mater. Sci. 29, 6236–6244 (2018).  https://doi.org/10.1007/s10854-018-8600-8 Google Scholar
  10. 10.
    I.M. Dharmadasa, O.K. Echendu, F. Fauzi, N.A. Abdul-Manaf, H.I. Salim, T. Druffel, R. Dharmadasa, B. Lavery, Effects of CdCl2 treatment on deep levels in CdTe and their implications on thin film solar cells: a comprehensive photoluminescence study. J. Mater. Sci. 26, 4571–4583 (2015).  https://doi.org/10.1007/s10854-015-3090-4 Google Scholar
  11. 11.
    A.A. Ojo, I.M. Dharmadasa, Electroplating of semiconductor materials for applications in large area electronics: a review. Coatings 8, 262 (2018).  https://doi.org/10.3390/coatings8080262 CrossRefGoogle Scholar
  12. 12.
    I.M. Dharmadasa, Review of the CdCl2 treatment used in CdS/CdTe thin film solar cell development and new evidence towards improved understanding. Coatings 4, 282–307 (2014).  https://doi.org/10.3390/coatings4020282 CrossRefGoogle Scholar
  13. 13.
    J. Fritsche, S. Gunst, E. Golusda, M.C. Lejard, A. Thißen, T. Mayer, A. Klein, R. Wendt, R. Gegenwart, D. Bonnet, W. Jaegermann, Surface analysis of CdTe thin film solar cells. Thin Solid Films 387(1–2), 161–164 (2001)CrossRefGoogle Scholar
  14. 14.
    N. Nakayama, H. Matsumoto, K. Yamaguchi, S. Ikegami, Y. Hioki, Ceramic thin film CdTe solar cell. Jpn. J. Appl. Phys. 15, 2281–2282 (1976).  https://doi.org/10.1143/JJAP.15.2281 CrossRefGoogle Scholar
  15. 15.
    H.I. Salim, V. Patel, A. Abbas, J.M. Walls, I.M. Dharmadasa, Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells. J. Mater. Sci. 26(5), 3119–3128 (2015)Google Scholar
  16. 16.
    Caroli S, Sharma VK, Parsons R, Jordan J, Dekker M (1989) Petr Vaný sek TABLE 1 ELECTROCHEMICAL SERIES (continued) TABLE 1 alphabetical listing (continued) 23–33Google Scholar
  17. 17.
    C. Sella, The electrodeposition mechanism of CdTe from acidic aqueous solutions. J. Electrochem. Soc. 133, 2043 (1986).  https://doi.org/10.1149/1.2108336 CrossRefGoogle Scholar
  18. 18.
    J. Sun, D.K. Zhong, D.R. Gamelin, Composite photoanodes for photoelectrochemical solar water splitting. Energy Environ. Sci. 3, 1252 (2010).  https://doi.org/10.1039/c0ee00030b CrossRefGoogle Scholar
  19. 19.
    G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).  https://doi.org/10.1016/0001-6160(53)90006-6 CrossRefGoogle Scholar
  20. 20.
    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1, 34–46 (1956).  https://doi.org/10.1080/14786435608238074 CrossRefGoogle Scholar
  21. 21.
    M.O. Reese, C.L. Perkins, J.M. Burst, S. Farrell, T.M. Barnes, S.W. Johnston, D. Kuciauskas, T.A. Gessert, W.K. Metzger, Intrinsic surface passivation of CdTe. J. Appl. Phys. 118, 155305 (2015).  https://doi.org/10.1063/1.4933186 CrossRefGoogle Scholar
  22. 22.
    A. Monshi, Modified scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 02, 154–160 (2012).  https://doi.org/10.4236/wjnse.2012.23020 CrossRefGoogle Scholar
  23. 23.
    A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006).  https://doi.org/10.1016/j.pcrysgrow.2006.09.001 CrossRefGoogle Scholar
  24. 24.
    A.R. Flores, R. Castro-Rodríguez, J.L. Peña, N. Romeo, A. Bosio, Characterization of CdTe films with in situ CdCl2 treatment grown by a simple vapor phase deposition technique. Appl. Surf. Sci. 255(15), 7012–7016 (2009)CrossRefGoogle Scholar
  25. 25.
    N.V.V. Sochinskii, V.N.N. Babentsov, N.I.I. Tarbaev, M.D. Serrano, E. Dieguez, The low temperature annealing of p-cadmium telluride in gallium-bath. Mater. Res. Bull. 28, 1061–1066 (1993).  https://doi.org/10.1016/0025-5408(93)90144-3 CrossRefGoogle Scholar
  26. 26.
    B.M. Basol, Electrodeposited CdTe and HgCdTe solar cells. Sol. Cells 23, 69–88 (1988).  https://doi.org/10.1016/0379-6787(88)90008-7 CrossRefGoogle Scholar
  27. 27.
    M. Haerifar, M. Zandrahimi, Effect of current density and electrolyte pH on microstructure of Mn–Cu electroplated coatings. Appl. Surf. Sci. 284, 126–132 (2013).  https://doi.org/10.1016/j.apsusc.2013.07.049 CrossRefGoogle Scholar
  28. 28.
    H. Metin, R. Esen, Annealing effects on optical and crystallographic properties of CBD grown CdS films. Semicond. Sci. Technol. 18, 647–654 (2003).  https://doi.org/10.1088/0268-1242/18/7/308 CrossRefGoogle Scholar
  29. 29.
    D.T.F. Marple, Optical absorption edge in CdTe: experimental. Phys. Rev. 150, 728–734 (1966).  https://doi.org/10.1103/PhysRev.150.728 CrossRefGoogle Scholar
  30. 30.
    O.K. Echendu, B.F. Dejene, F.G. Hone, Comparative performance of CdS/CdTe thin film solar cells fabricated with electrochemically deposited CdTe from 2-electrode and 3-electrode set-ups. Mater. Sci. Eng. 232, 55–60 (2018)CrossRefGoogle Scholar
  31. 31.
    Moutinho HR, Al-Jassim MM, Abulfotuh FA, Levi DH, Dippo PC,Dhere RG, Kazmerski LL (1997) Studies of recrystallization of CdTe thin films after CdCl2 treatment. Conf. Rec. Twenty Sixth IEEE Photovolt. Spec. Conf.—1997Google Scholar
  32. 32.
    P.D. Paulson, V. Dutta, Study of in situ CdCl2 treatment on CSS deposited CdTe films and CdS/CdTe solar cells. Thin Solid Films 370, 299–306 (2000).  https://doi.org/10.1016/S0040-6090(00)00912-3 CrossRefGoogle Scholar
  33. 33.
    K. Rajeshwar, Fundamentals of semiconductor electrochemistry and photoelectrochemistry, Encyclopedia of Electrochemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007), pp. 1–51Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. Ojo
    • 1
    • 3
    Email author
  • A. O. Ojo
    • 1
  • O. J. Femi-Jemilohun
    • 2
  • A. Adebayo
    • 1
  • D. O. Akindele
    • 1
  1. 1.Department of Mechanical EngineeringEkiti State University (EKSU)Ado-EkitiNigeria
  2. 2.Department of Electrical and Electronics EngineeringEkiti State University (EKSU)Ado-EkitiNigeria
  3. 3.Electronic Materials and Sensors GroupMaterials and Engineering Research Institute (MERI), Sheffield Hallam UniversitySheffieldUK

Personalised recommendations