Advertisement

Structures and microwave dielectric behavior of Sr0.1Ca0.9TiO3–Bi0.1Na0.1Li0.4Sm0.4TiO3 ceramic system

  • Qin Feng
  • Chang-Lai YuanEmail author
  • Xiao LiuEmail author
  • Qingning Li
  • Nengneng Luo
Article
  • 18 Downloads

Abstract

Microwave dielectric ceramics with xSr0.1Ca0.9TiO3–(1−x)Bi0.1Na0.1Li0.4Sm0.4TiO3 (xSCT–BNLST) compositions were prepared through the conventional oxide-state reaction. X-ray diffraction results showed that the symmetry in xSCT–BNLST system were improved with the increase of x. Based on the calculation results, the deviation of observed dielectric polarizabilities from theoretical values could be ascribed to the increase of A-site ionic polarizability and B-site bond valence. The decreased temperature coefficient of resonant frequency, τf, was dependent on the B-site bond valence in the tilted region. With the increase of temperature, the samples changed their main conductive carrier, from first ionization of oxygen vacancies to second ionization of oxygen vacancies. Optimum microwave dielectric properties were achieved, for 0.09SCT–BNLST ceramic with relative permittivity, εr = 111, quality factor, Q × f = 3819 GHz and τf ~ 0 ppm/°C. The system has the potential for use in dielectrically loaded antennas and C0G high-frequency filter applications.

Keywords

Ionic polarizability B-site bond valence Impedance spectroscopy Oxygen vacancies 

Notes

Acknowledgements

Financial support of the Enhanced Project of Basic Capability for Middle Young Teachers (Grant No. 2017KY0209) is gratefully acknowledged by the authors.

References

  1. 1.
    X.Y. Chen, W.J. Zhang, B. Zalinska, I. Sterianou, Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3–B2O3. J. Am. Ceram. Soc. 95, 3207–3213 (2012)CrossRefGoogle Scholar
  2. 2.
    X. Yu, S. Chai, X. Kuang, C. Su, F. Pan, L. Fang, Conductivity, dielectric loss, and electrical heterogeneous microstructure of eight-layer twinned hexagonal perovskite ceramics Ba8CuTa6O24−δ. J. Am. Ceram. Soc. 96, 2510–2514 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Ogihara, C.A. Randall, S.T. McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Mirsaneh, O.P. Listen, B. Zalinska, I.M. Reaney, Circularly polarized dielectric-loaded antennas: current technology and future challenges. Adv. Funct. Mater. 18, 2293–2300 (2008)CrossRefGoogle Scholar
  5. 5.
    Y.J. Wu, X.M. Chen, Structures and microwave dielectric properties of Ba6−3x(Nd, Biy)8+2xTi18O54 (x=2.3) solid solution. J. Mater. Res. 16, 1734–1738 (2001)CrossRefGoogle Scholar
  6. 6.
    N. Qin, X.M. Chen, Effects of Sm/Bi co-substitution on microstructures and microwave dielectric characteristics of Ba6+3xLa8+2xTi18O54 (x=2/3) solid solution. Mater. Sci. Eng. B 111, 90–94 (2004)CrossRefGoogle Scholar
  7. 7.
    Q.H. Yang, E.S. Kim, J. Xu, Z. Meng, Microwave dielectric properties of (Pb, Ca, La)(Fe, Nb)O3+δ ceramics substituted by Ti for B-site. Mater. Sci. Eng. B 99, 332–335 (2003)CrossRefGoogle Scholar
  8. 8.
    Q.H. Yang, E.S. Kim, Y.J. Kim, P.K. Kim, Effect of PbO-B2O3-V2O5 glass on the microwave dielectric properties of (Pb, Ca, La)(Fe, Nb)O3 ceramics. Mater. Chem. Phys. 79, 236–238 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Kucheiko, J.W. Choi, H.J. Kim, S.J. Yoon, H.J. Jung, Microwave characteristics of (Pb, Ca)(Fe, Nb, Sn)O3 dielectric materials. J. Am. Ceram. Soc. 80, 2937–2940 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Nakano, K. Suzuki, T. Miura, M. Kobayashi, Low-Temperature-fireable dielectric material Pb(Fe2⁄3W1⁄3)O3–(Pb, Ca)(Fe1⁄2Nb1⁄2)O3 for microwave use. Jpn. J. Appl. Phys. 32, 4314–4318 (1993)CrossRefGoogle Scholar
  11. 11.
    Z. Liang, L.L. Yuan, J.J. Bian, Microwave dielectric characterization of the perovskite series A1/2Ln1/2TiO3–NaNbO3 (A=Na, Li; Ln=La, Nd, Sm). J. Alloys Compd. 509, 1893–1896 (2011)CrossRefGoogle Scholar
  12. 12.
    D.A. Aziz, I. Sterianou, I.M. Reaney, (1−x)CaTiO3-x(Li0.5Nd0.5)TiO3 for ultra-small dielectrically loaded antennas. J. Mater. Sci. 44, 6247–6250 (2009)CrossRefGoogle Scholar
  13. 13.
    K. Yan, N. Shiichi, T. Karaki, M. Adachi, Microwave dielectric properties of Ca0.8Sr0.2TiO3–Li0.5Nd0.5TiO3 ceramics with near-zero temperature coefficient of resonant frequency. Jpn. J. Appl. Phys. 46, 7105–7107 (2007)CrossRefGoogle Scholar
  14. 14.
    E.S. Kim, K.H. Yoon, Microwave dielectric properties of (1−x)CaTiO3-xLi1/2Sm1/2TiO3 ceramics. J. Eur. Ceram. Soc. 23, 2397–2401 (2003)CrossRefGoogle Scholar
  15. 15.
    X. Chen, X. Bai, W. Zhang, Low temperature sintering and microwave dielectric properties of Bi4B2O9-added 0.25CaTiO3–0.75(Li1/2Nd1/2)TiO3 ceramics. J. Alloys Compd. 541, 132–136 (2012)CrossRefGoogle Scholar
  16. 16.
    T. Lowe, F. Azough, R. Freer, The microwave dielectric properties of CaTiO3=Li0.5Nd0.5TiO3 ceramics prepared with Bi2Ti2O7 additions. J. Electroceram. 16, 257–261 (2006)CrossRefGoogle Scholar
  17. 17.
    N. Ichinose, K. Mutoh, Microwave dielectric properties in the (1−x)(Na1/2La1/2)TiO3x(Li1/2Sm1/2)TiO3 ceramic system. J. Eur. Ceram. Soc. 23, 2455–2459 (2003)CrossRefGoogle Scholar
  18. 18.
    J.S. Kim, C.I. Cheon, H.J. Kang, C.H. Lee, K.Y. Kim, S. Nam, Crystal structure and microwave dielectric properties of CaTiO3-(Li1/2Nd1/2)TiO3-(Ln1/3Nd1/3) TiO3 (Ln= La, Dy) ceramics. Jpn. J. Appl. Phys. 38, 5633–5637 (1999)CrossRefGoogle Scholar
  19. 19.
    F.F. Gu, G.H. Chen, C.L. Yuan, C.R. Zhou, T. Yang, Y. Yang, Low temperature sintering and microwave dielectric properties of 0.2Ca0.8Sr0.2TiO3–0.8Li0.5Sm0.5TiO3 ceramics with BaCu (B2O5) additive and TiO2 dopant. Mater. Res. Bull. 61, 245–251 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Liu, C.L. Yuan, X.Y. Liu, Y. Li, G.H. Chen, X.Q. Li, Microstructures and microwave dielectric properties of xLi1/2Ln1/2TiO3-(1−x)Na1/2Bi1/2TiO3(Ln=Sm and Nd) ceramic systems. J. Alloys. Compd. 698, 329–335 (2017)CrossRefGoogle Scholar
  21. 21.
    P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, Structure-microwave property relations in (SrxCa(1–x))n+1TinO3n+1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)CrossRefGoogle Scholar
  22. 22.
    N.E. Brese, M. O’Keefee, Bond-valence parameters for solids. Acta Cryst. B47, 192–197 (1991)CrossRefGoogle Scholar
  23. 23.
    M. O’Keefee, N.E. Brese, Bond-valence parameters for anion-anion bonds in solids. Acta Cryst. B48, 152–154 (1992)CrossRefGoogle Scholar
  24. 24.
    H.S. Park, K.H. Yooon, E.S. Kim, Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex Perovskite (Pb1−xCax)[Fe0.5(Nb1−yTay)0.5]O3. J. Am. Ceram. Soc. 84, 99–103 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, A family of oxide ion conductors based on the ferroelectric Perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Xia, Z. Liu, Y. Wang, L. Shi, L. Chen, Conduction behavior change responsible for the resistive switching as investigated by complex impedance spectroscopy. Appl. Phy. Lett. 91, 102904 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Resources, Environment and MaterialsGuangxi UniversityNanningChina
  2. 2.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina
  3. 3.Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured MaterialsGuangxi UniversityNanningChina

Personalised recommendations