Advertisement

Enhanced mechanical and electrical insulating properties of (poly(para-phenylene terephthamide)) PPTA-based specialty paper with nanoscale PPTA fibers

  • Zhaoqing LuEmail author
  • Lianmeng Si
  • Yongsheng Zhao
  • Jizhen Huang
  • Cheng Yao
  • Fengfeng Jia
  • Qin Ma
Article
  • 9 Downloads

Abstract

Poly (para-phenylene terephthamide) PPTA-based specialty paper suffers from limited mechanical and electrical insulation properties due to weak interfacial interactions between chemically inert PPTA microfibers. Herein, in order to activate the fiber surface, PPTA nanofibers were prepared through DMSO/KOH deprotonation process. Whereafter, a composite paper with reinforced concrete structure was constructed by combining PPTA microfibers and PPTA nanofibers through vacuum-assisted filtration process. The results show that the composite paper has a high mechanical strength of ~ 84.8 MPa, high Young’s modulus of ∼ 2.4 GPa, and elongation at break of ∼ 7%. Meanwhile, the Weibull distribution model predicts the dielectric breakdown strength of composite paper as high as 74.4 kV/mm. In addition, the composite paper also exhibited high-temperature resistance and UV resistance, indicating great advantages for operating under high temperature and electrical insulation conditions.

Notes

Acknowledgements

The authors would like to acknowledge the financial support from the National Key Research and Development Plan (Grant No. 2017YFB0308300), Key Scientific Research Group of Shaanxi Province (Grant No. 2017-KCT-02), Shaanxi Overall Planning Innovative Engineering Project of Science and Technology (Grant No. 2016KTCQ01-87), Key Laboratory Research Project of Shaanxi Education Department (Project No. 18JS011).

References

  1. 1.
    M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, Eur. Polym. J. 43, 3434–3441 (2007)CrossRefGoogle Scholar
  2. 2.
    L. Zhou, Z. Yang, W. Luo, X. Han, S. Jang, J. Dai, B. Yang, L. Hu, ACS Appl. Mater. Interfaces 8, 28838–28843 (2016)CrossRefGoogle Scholar
  3. 3.
    L. Chen, C. Lai, R. Marchewka, R.M. Berry, K.C. Tam, Nanoscale 8, 13288–13296 (2016)CrossRefGoogle Scholar
  4. 4.
    E. Carrilho, A. Martinez, G. Whitesides, Anal. Chem. 81, 7091–7095 (2009)CrossRefGoogle Scholar
  5. 5.
    Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du, H.M. Cheng, Adv. Energy Mater. 1, 917–922 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Liu, H. Jiang, F. Du, D. Zhang, Z. Li, H. Zhou, Chem. Eng. 5, 10538–10543 (2017)Google Scholar
  7. 7.
    Z. Lu, W. Hu, F. Xie, Y. Hao, Cellulose 24, 2827–2835 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang, M. Liu, Nano Lett. 12, 321–325 (2012)CrossRefGoogle Scholar
  9. 9.
    C.T. Hsieh, H. Teng, W.Y. Chen, Y.S. Cheng, Carbon 48, 4219–4229 (2010)CrossRefGoogle Scholar
  10. 10.
    S.R. Kwon, M.B. Elinski, J.D. Batteas, J.L. Lutkenhaus, ACS Appl. Mater. Interfaces 9, 17125–17135 (2017)CrossRefGoogle Scholar
  11. 11.
    M.A. Chaudhry, A.K. Jonscher, J. Mater. Sci. 20, 3581–3589 (1985)CrossRefGoogle Scholar
  12. 12.
    J. Liu, J. Park, K.H. Park, Y. Ahn, J.Y. Park, K. Ha Koh, S. Lee, Nanotechnology 21, 485504 (2010)CrossRefGoogle Scholar
  13. 13.
    F.F. Chen, Y.J. Zhu, F. Chen, L.Y. Dong, R.L. Yang, Z.C. Xiong, ACS Nano 12, 3159–3171 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Lingaiah, K. Shivakumar, Eur. Polym. J. 49, 2101–2108 (2013)CrossRefGoogle Scholar
  15. 15.
    L. RongYao, W. TaoZhao, S. QingXu, Q. LongSun, Adv. Mater. Res. 796, 290–293 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Zhang, M. Zhang, K. Li, Polym. Bull. 66, 351–362 (2011)CrossRefGoogle Scholar
  17. 17.
    R. Roy, S.J. Park, J.H. Kweon, J.H. Choi, Compos. Struct. 117, 255–266 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Zach, J. Hroudová, J. Brožovský, Z. Krejza, A. Gailius, Proc. Eng. 57, 1288–1294 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Song, M. Wen, L. Li, A. Isenberg, IEEE International Conference on Dielectrics. IEEE 2016Google Scholar
  20. 20.
    M. Wen, J. Song, Y. Song, Y. Liu, C. Li, P. Wang, I.E.E.E.T. Dielect, El. In. 20, 1998–2008 (2013)Google Scholar
  21. 21.
    O. Rodríguez-Uicab, F. Avilés, P.I. Gonzalez-Chi, G. Canché-Escamilla, S. Duarte-Aranda, M. Yazdani-Pedram, P. Toro, F. Gamboa, M.A. Mazo, A. Nistal, J. Rubio, Appl. Surf. Sci. 385, 379–390 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Xing, L. Liu, F. Xie, Y. Huang, Appl. Surf. Sci. 375, 65–73 (2016)CrossRefGoogle Scholar
  23. 23.
    R. Sa, Y. Yan, Z. Wei, L. Zhang, W. Wang, M. Tian, ACS Appl. Mater. Interfaces 6, 21730–21738 (2014)CrossRefGoogle Scholar
  24. 24.
    G.S. Sheu, S.S. Shyu, Compos. Sci. Technol. 52, 489–497 (1994)CrossRefGoogle Scholar
  25. 25.
    G. Li, C. Zhang, Y. Wang, P. Li, Y. Yu, X. Jia, H. Liu, X. Yang, Z. Xue, S. Ryu, Compos. Sci. Technol. 68, 3208–3214 (2008)CrossRefGoogle Scholar
  26. 26.
    G.J. Ehlert, Y. Lin, H.A. Sodano, Carbon 49, 4246–4255 (2011)CrossRefGoogle Scholar
  27. 27.
    T.K. Lin, B.H. Kuo, S.S. Shyu, S.H. Hsiao, J. Adhes. Sci. Technol. 13, 545–560 (1999)CrossRefGoogle Scholar
  28. 28.
    S.-J. Park, M.K. Seo, T.J. Ma, D.R. Lee, J. Colloid Interfaces Sci. 252, 249–255 (2002)CrossRefGoogle Scholar
  29. 29.
    L. Xing, L. Liu, Y. Huang, D. Jiang, B. Jiang, J. He, Compos. B 69, 50–57 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Yang, K. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E.M. Arruda, J. Kieffer, M.D. Thouless, N.A. Kotov, ACS Nano 5, 6945–6954 (2011)CrossRefGoogle Scholar
  31. 31.
    Q. Kuang, D. Zhang, J.C. Yu, Y.W. Chang, M. Yue, Y. Hou, M. Yang, J. Phys. Chem. C 119, 27467–27477 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Lin, S.H. Bang, M.H. Malakooti, H.A. Sodano, Acs Appl. Mater. Interfaces 9, 11167–11175 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Guan, W. Li, Y. Zhang, Z. Shi, J. Tan, F. Wang, Y. Wang, Compos. Sci. Technol. 144, 193 (2017)CrossRefGoogle Scholar
  34. 34.
    S.R. Kwon, J. Harris, T. Zhou, D. Loufakis, J.G. Boyd, J.L. Lutkenhaus, ACS Nano 11, 6682–6690 (2017)CrossRefGoogle Scholar
  35. 35.
    J. Zhu, W. Cao, M. Yue, Y. Hou, J. Han, M. Yang, ACS Nano 9, 2489–2501 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Fan, Z. Shi, L. Zhang, J. Wang, J. Yin, Nanoscale 4, 7046–7055 (2012)CrossRefGoogle Scholar
  37. 37.
    Z. Lu, L. Si, W. Dang, Y. Zhao, Compos. A 115, 321–330 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Xu, X. Zhao, C. Xu, N.A. Kotov, Adv. Mater. 30, 1703343 (2018)CrossRefGoogle Scholar
  39. 39.
    J. Zhu, M. Yang, A. Emre, J.H. Bahng, L. Xu, J. Yeom, B. Yeom, Y. Kim, K. Johnson, P. Green, N.A. Kotov, Angew. Chem. Int. Ed. 56, 11744–11748 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Cao, C.P. Siepermann, M. Yang, A. Waas, N. Kotov, M.D. Thouless, E. Arruda, Adv. Funct. Mater. 23, 2072–2080 (2013)CrossRefGoogle Scholar
  41. 41.
    S.P. Samant, C.A. Grabowski, K. Kisslinger, K.G. Yager, G. Yuan, S.K. Satija, M.F. Durstock, D. Raghavan, A. Karim, ACS Appl. Mater. Interfaces 8, 7966–7976 (2016)CrossRefGoogle Scholar
  42. 42.
    S.P. Fillery, H. Koerner, L. Drummy, E. Dunkerley, M.F. Durstock, D.F. Schmidt, R.A. Vaia, ACS Appl. Mater. Interfaces 4, 1388–1396 (2012)CrossRefGoogle Scholar
  43. 43.
    B.A. Patterson, H.A. Sodano, ACS Appl. Mater. Interfaces 8, 33963–33971 (2016)CrossRefGoogle Scholar
  44. 44.
    Z. Cheng, D. Hong, Y. Dai, C. Jiang, C. Meng, L. Luo, X. Liu, Appl. Surf. Sci. 434, 473–480 (2018)CrossRefGoogle Scholar
  45. 45.
    W. Tian, T. Qiu, Y. Shi, L. He, X. Tuo, Mater. Lett. 202, 158–161 (2017)CrossRefGoogle Scholar
  46. 46.
    J. Zhang, Q. Kong, Z. Liu, S. Pang, L. Yue, J. Yao, X. Wang, G. Cui, Solid State Ionics 245–246, 49–55 (2013)CrossRefGoogle Scholar
  47. 47.
    S. Bose, S. Basu, A. Das, M. Rahman, L.T. Drzal, J. Appl. Polym. Sci. 134, 45099 (2017)CrossRefGoogle Scholar
  48. 48.
    Y. Zhao, W. Dang, Z. Lu, J. Deng, Y. Hao, Z. Su, M. Zhang, Cellulose 25, 3913–3925 (2018)CrossRefGoogle Scholar
  49. 49.
  50. 50.
    www.dupont.com/content/dam/assets/products-and-services/electronic-electrical-. materials/assets/DPT16_21668_Nomex_410_Tech_Data_Sheet_me03_REFERENCE.pdf
  51. 51.
    B. Yang, M. Zhang, Z. Lu, J. Luo, S. Song, J. Tan, Q. Zhang, Compos. B 154, 166–174 (2018)CrossRefGoogle Scholar
  52. 52.
    J. Luo, M. Zhang, B. Yang, G. Liu, Appl. Nanosci. 1, 1 (2018).  https://doi.org/10.1007/s13204-018-0722-z Google Scholar
  53. 53.
    J. Fan, Z. Shi, M. Tian, J. Yin, RSC Adv. 3, 17664–17667 (2013)CrossRefGoogle Scholar
  54. 54.
    B. Yang, M. Zhang, Z. Lu, J. Luo, S. Song, Q. Zhang, A.C.S. Sustain, Chem. Eng. 6, 8954–8963 (2018)Google Scholar
  55. 55.
    Y. Zhao, W. Dang, Z. Lu, L. Wang, L. Si, M. Zhang, Polym. Int. 67, 204–211 (2018)CrossRefGoogle Scholar
  56. 56.
    Z. Lu, W. Dang, Y. Zhao, L. Wang, M. Zhang, G. Liu, RSC Adv. 7, 7293–7302 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentNational Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & TechnologyXi’anPeople’s Republic of China
  2. 2.Department of Applied Chemistry, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations