Dielectric properties of Al2O3 modified CaCu3Ti4O12 ceramics

  • Y. Zhang
  • L. L. Xue
  • K. Zeng
  • X. W. WangEmail author
  • L. Y. Sun
  • X. H. Meng
  • Y. C. Shi
  • Y. Y. Li
  • M. Z. Cao
  • Y. C. Hu
  • J. Shang
  • S. Y. Shang
  • S. Q. Yin


In this work, CaCu3Ti4O12 modified by Al2O3 (w = 0, 0.05, 0.1, 1%) powders were prepared via a sol–gel process, and then the ceramics were prepared by conventional process using the obtained powders. The dependence of structure and properties of CaCu3Ti4O12 ceramics on the addition fractions of Al2O3 were studied. The results showed that the grain size and density of the samples greatly increase after modifying Al2O3. Moreover, all the samples exhibit giant dielectric properties (~ 104) and relatively low dielectric loss over a wide temperature and frequency range (20–200 °C, 102–106 Hz). The giant dielectric properties of these samples could be explained by the internal barrier layer capacitance (IBLC) model, which consists of semiconducting grains and insulating grain boundaries. Specifically, the optimal Al2O3 modified CaCu3Ti4O12 (w = 0.05%) ceramic shows colossal permittivity (~ 4.29 × 104) and low dielectric loss (~ 0.06) at room temperature and 1 kHz. The results indicated that the microstructures and dielectric properties of CaCu3Ti4O12 were significantly improved after modifying Al2O3.



This work has been supported by the National Natural Science Foundation of China (Grant Nos. 51402091, 51601059, 11847136), the Key Scientific Research Foundation in Henan Province (Grant No. 19B430005), the Special Scientific Research Foundation in Henan Normal University (Grant No. 20180543), and the National University Student Innovation Program (Grant No. 20160098), Foundation of Henan Educational Committee (Grant No. 19A140010), and Science and Technology Research Project of Henan Province (Grant No. 182102210375).


  1. 1.
    D. Xu, K. He, R. Yu, X. Sun, Y. Yang, H. Xu, H. Yuan, J. Ma, Mater. Chem. Phys. 153, 229–235 (2015)CrossRefGoogle Scholar
  2. 2.
    K. Prompa, E. Swatsitang, C. Saiyasombat, T. Putjuso, Ceram. Int. 44, 13267–13277 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Li, X.L. Chen, D.F. Zhang, Q. Liu, C.X. Li, Ceram. Int. 41, 14854–14859 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Boonlakhorn, P. Kidkhunthod, B. Putasaeng, P. Thongbai, Ceram. Int. 43, 2705–2711 (2017)CrossRefGoogle Scholar
  5. 5.
    L.M. Jesus, J.C.A. Santos, D.V. Sampaio, L.B. Barbosa, R.S. Silva, J.C. M’Peko, J. Alloys Compd. 654, 482–490 (2016)CrossRefGoogle Scholar
  6. 6.
    L. Li, R. Wang, S. Yu, Z. Sun, H. Zheng, Mater. Lett. 220, 119–121 (2018)CrossRefGoogle Scholar
  7. 7.
    T. Shibahara, T. Kawanami, T. Takahashi, Jpn. J. Appl. Phys. 56, 10PC07 (2017)CrossRefGoogle Scholar
  8. 8.
    J. Khemprasit, B. Khumpaitool, Ceram. Int. 41, 663–669 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Khumpaitool, J. Khemprasit, Mater. Lett. 65, 1053–1056 (2011)CrossRefGoogle Scholar
  10. 10.
    X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, J. Mater. Sci.: Mater. Electron. 27, 12134–12140 (2016)Google Scholar
  11. 11.
    L. Sun, Z. Wang, Y. Shi, E. Cao, Y. Zhang, H. Peng, L. Ju, Ceram. Int. 41, 13486–13492 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Hu, Y. Teng, Q. Wang, L. Wu, J. Mater. Sci.: Mater. Electron. 29, 9245–9250 (2018)Google Scholar
  13. 13.
    T. Li, H.F. He, T. Zhang, B. Zhao, Z.Q. Chen, H.Y. Dai, R.Z. Xue, Z.P. Chen, J. Alloys Compd. 684, 315–321 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Kumar, M. Zulfequar, T.D. Senguttuvan, J. Mater. Sci.: Mater. Electron. 27, 5233–5237 (2016)Google Scholar
  15. 15.
    R. Kumar, M. Zulfequar, V.N. Singh, J.S. Tawale, T.D. Senguttuvan, J. Alloys Compd. 541, 428–432 (2012)CrossRefGoogle Scholar
  16. 16.
    M.M. Ahmad, K. Yamada, J. Appl. Phys. 115, 154103 (2014)CrossRefGoogle Scholar
  17. 17.
    M.M. Ahmad, Appl. Phys. Lett. 102, 232908 (2013)CrossRefGoogle Scholar
  18. 18.
    J.Q. Wang, X. Huang, X.H. Zheng, D.P. Tang, J. Mater. Sci.: Mater. Electron. 27, 1345–1349 (2015)Google Scholar
  19. 19.
    K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Ceram. Int. 40, 15897–15906 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Feng, X. Tang, Y. Yan, X. Chen, Z. Jiao, G. Cao, Phys. Status Solidi A 203, R22–R24 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Boonlakhorn, P. Thongbai, Jpn. J. Appl. Phys. 54, 06FJ06 (2015)CrossRefGoogle Scholar
  22. 22.
    C.-H. Zhang, K. Zhang, H.-X. Xu, Q. Song, Y.-T. Yang, R.-H. Yu, D. Xu, X.-N. Cheng, Trans. Nonferr. Metal Soc. 22, s127–s132 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, Mater. Res. Bull. 60, 695–703 (2014)CrossRefGoogle Scholar
  24. 24.
    H.E. Kim, S.-M. Choi, Y.-W. Hong, S.-I. Yoo, J. Alloys Compd. 610, 594–599 (2014)CrossRefGoogle Scholar
  25. 25.
    C. Zhang, Q. Chi, L. Liu, Y. Chen, J. Dong, T. Ma, X. Wang, Q. Lei, J. Mater. Sci.: Mater. Electron. 28, 2502–2510 (2016)Google Scholar
  26. 26.
    J. Li, R. Jia, X. Tang, X. Zhao, S. Li, J. Phys. D 46, 325304 (2013)CrossRefGoogle Scholar
  27. 27.
    X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, J. Mater. Sci.: Mater. Electron. 29, 2244–2250 (2018)Google Scholar
  28. 28.
    S. De Almeida-Didry, M.M. Nomel, C. Autret, C. Honstettre, A. Lucas, F. Pacreau, F. Gervais, J. Eur. Ceram. Soc. 38, 3182–3187 (2018)CrossRefGoogle Scholar
  29. 29.
    W. Wan, J. Yang, W.-X. Yuan, X. Zhao, C. Liu, T. Qiu, Int. J. Appl. Ceram. Technol. 13, 382–388 (2016)CrossRefGoogle Scholar
  30. 30.
    B.A. Bender, M.J. Pan, Mater. Sci. Eng. B 117, 339–347 (2005)CrossRefGoogle Scholar
  31. 31.
    A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377–1381 (2011)CrossRefGoogle Scholar
  32. 32.
    R. Jia, X. Zhao, J. Li, X. Tang, Mater. Sci. Eng. B 185, 79–85 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Fang, M. Shen, J. Yang, Z. Li, Solid State Commun. 137, 381–386 (2006)CrossRefGoogle Scholar
  34. 34.
    N. Barman, K.B.R. Varma, Ceram. Int. 43, 6363–6370 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Tsuji, W.-T. Chen, H. Guo, W.-H. Lee, S. Guillemet-Fritsch, C.A. Randall, J. Appl. Phys. 121, 064107 (2017)CrossRefGoogle Scholar
  36. 36.
    P. Xu, M. Wang, S. Yang, Y. Wang, W. Hao, L. Sun, E. Cao, Y. Zhang, J. Electron. Mater. 47, 5582–5587 (2018)CrossRefGoogle Scholar
  37. 37.
    J. Wang, Z. Lu, T. Deng, C. Zhong, Z. Chen, J. Eur. Ceram. Soc. 38, 3505–3511 (2018)CrossRefGoogle Scholar
  38. 38.
    L. Yang, X. Chao, Z. Yang, N. Zhao, L. Wei, Z. Yang, Ceram. Int. 42, 2526–2533 (2016)CrossRefGoogle Scholar
  39. 39.
    F. Yi, R. Xiong, J. Wuhan Univ. Technol. 29, 912–916 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Functional Materials, Henan Key Laboratory of Photovoltaic Materials, College of Physics and Materials ScienceHenan Normal UniversityXinxiangPeople’s Republic of China

Personalised recommendations