Advertisement

SiO2 nanospheres assembled on MoS2 nanosheets for improving electrochemical performance for supercapacitors

  • J. H. ZhengEmail author
  • R. M. Zhang
  • K. K. Cheng
  • T. Liu
  • Z. Q. Xu
  • X. G. Wang
  • P. F. Yu
Article
  • 1 Downloads

Abstract

This article shows that carbon dots (CQDs), polystyrene sphere (PS) or silica sphere (SiO2) assembled on MoS2 have been successfully synthesized as electrode materials (CQDs/MoS2, PS/MoS2 and SiO2/MoS2) for supercapacitors by a simple hydrothermal process. It can be observed that SiO2 is distributed in the periphery of the flower-like MoS2, and the special morphology has a positive effect on electrochemical performance. As expected, SiO2/MoS2 as a promising electrode material for supercapacitor, exhibiting a higher specific capacitance of 1448.53 F g−1 at a current density of 5 A g−1 and good cycle stability of 70.10% retention after 2000 cycles. This method also provides a reference for the electrode material of supercapacitors with better performance in the future.

Notes

Acknowledgements

The work was funded by National Natural Science Foundation of China (Grant Nos. 21607013, 51602026), the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (Nos. 300102318108, 300102228203, 300102318106, 300102318402), College Students’ innovation and Entrepreneurship Project (201810710127, 201910710466).

References

  1. 1.
    Y. Zhang, W.W. Guo, T.X. Zheng, Y.X. Zhang, X. Fan, Engineering hierarchical Diatom@CuO@MnO2 hybrid for high performance supercapacitor. Appl. Surf. Sci. 427, 1158–1165 (2018)CrossRefGoogle Scholar
  2. 2.
    S.V.P. Vattikuti, B.P. Reddy, B. Chan, J. Shim, Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors. J. Solid State Chem. 262, 106–111 (2018)CrossRefGoogle Scholar
  3. 3.
    S.K. Shinde, V.J. Fulari, D.Y. Kim, N.C. Maile, R.R. Koli, H.D. Dhaygude, G.S. Ghodake, Chemical synthesis of flower-like hybrid Cu(OH)2/CuO electrode: application of polyvinyl alcohol and triton X-100 to enhance supercapacitor performance. Colloid Surf. B 156, 165–174 (2017)CrossRefGoogle Scholar
  4. 4.
    J.S. Shaikh, R.C. Pawar, N.L. Tarwal, D.S. Patil, P.S. Patil, Supercapacitor behavior of CuO-PPA hybrid films: effect of PAA concentration. J. Alloys Compd. 509, 7168–7174 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Krishnamoorthy, S.J. Kim, Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications. Mater. Res. Bull. 48, 3136–3139 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Ouyang, R. Huang, X. Xia, H. Ye, X. Jiao, L. Wang, W. Lei, Q. Hao, Hierarchical structure electrodes of NiO ultrathin nanosheets anchored to NiCo2O4 on carbon cloth with excellent cycle stability for asymmetric supercapacitors. Chem. Eng. J. 355, 416–427 (2019)CrossRefGoogle Scholar
  7. 7.
    A.M. Abioye, S. Faraji, F.N. Ani, Effect of heat treatment on the characteristics of electroless activated carbon-nickel oxide nanocomposites. J. Teknol. 79, 61–67 (2017)Google Scholar
  8. 8.
    A.M. Abioye, F.N. Ani, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew. Sust. Energy Rev. 52, 1282–1293 (2015)CrossRefGoogle Scholar
  9. 9.
    A.M. Abioye, Z.A. Noorden, F.N. Ani, Synthesis and characterizations of electroless oil palm shell based-activated carbon/nickel oxide nanocomposite electrodes for supercapacitor applications. Electrochim. Acta 225, 493–503 (2017)CrossRefGoogle Scholar
  10. 10.
    A.M. Abioye, F.N. Ani, Advancement in the production of activated carbon from biomass using microwave heating. J. Teknol. 79, 79–88 (2017)Google Scholar
  11. 11.
    S.E. Moosavifard, J. Shamsi, S. Fani, S. Kadkhodazade, Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors. Ceram. Int. 40, 15973–15979 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.P. Gao, K.J. Huang, X. Wu, Z.Q. Hou, Y.Y. Liu, MoS2 nanosheets assembling three-dimensional nanospheres for enhanced-performance supercapacitor. J. Alloys Compd. 741, 174–181 (2018)CrossRefGoogle Scholar
  13. 13.
    R.B. Pujari, A.C. Lokhande, A.R. Shelke, J.H. Kim, C.D. Lokhande, Chemically deposited nano grain composed MoS2 thin films for supercapacitor application. J. Colloid Interface Sci. 496, 1–7 (2017)CrossRefGoogle Scholar
  14. 14.
    Q. Liu, A. Gao, Y. Huang, F. Yi, H. Cheng, S. Zhao, H. Chen, R. Zeng, Z. Sun, D. Shu, X. Song, 3D sandwiched nanosheet of MoS2/C@RGO achieved by supramolecular self-assembly method as high performance material in supercapacitor. J. Alloys Compd. 777, 1176–1183 (2019)CrossRefGoogle Scholar
  15. 15.
    X.B. Wang, J. Hao, Y.C. Su, F.G. Liu, J. An, J.S. Lian, A Ni1-xZnxS/Ni foam composite electrode with multi-layers: one-step synthesis and high supercapacitor performance. J. Mater. Chem. A 4, 12929–12939 (2016)CrossRefGoogle Scholar
  16. 16.
    L. Sun, L. Jiang, S. Peng, Y. Zheng, X. Sun, H. Su, C. Qi, Preparation of Au catalysts supported on core-shell SiO2/polypyrrole composites with high catalytic performances in the reduction of 4-nitrophenol. Synth. Met. 248, 20–26 (2019)CrossRefGoogle Scholar
  17. 17.
    X.Q. Qiao, F.C. Hu, F.Y. Tian, D.F. Hou, D.S. Li, Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets. RSC Adv. 6, 11631–11636 (2016)CrossRefGoogle Scholar
  18. 18.
    L. Yue, H. Guo, X. Wang, T. Sun, H. Liu, Q. Li, M. Xu, Y. Yang, W. Yang, Non-metallic element modified metal-organic frameworks as high performance electrodes for all-solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 539, 370–378 (2019)CrossRefGoogle Scholar
  19. 19.
    B. Kirubasankar, P. Palanisamy, S. Arunachalam, V. Murugadoss, S. Angaiah, 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chem. Eng. J. 355, 881–890 (2019)CrossRefGoogle Scholar
  20. 20.
    R. Xu, J. Lin, J. Wu, M. Huang, L. Fan, Z. Xu, Z. Song, A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Appl. Surf. Sci. 463, 721–731 (2019)CrossRefGoogle Scholar
  21. 21.
    D. Qiu, X. Ma, J. Zhang, Z. Lin, B. Zhao, In situ synthesis of mesoporous NiO nanoplates embedded in a flexible graphene matrix for supercapacitor electrodes. Mater. Lett. 232, 163–166 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Hou, X. Yan, X. Wang, Q. Zhai, Tuning the porosity of mesoporous NiO through calcining isostructural NiMOFs toward supercapacitor applications. J. Solid State Chem. 263, 72–78 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Zhang, L. Ren, L.J. Deng, J. Wang, L. Kang, Z.H. Liu, Graphene-MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater. Res. Bull. 49, 577–583 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. H. Zheng
    • 1
    Email author
  • R. M. Zhang
    • 1
  • K. K. Cheng
    • 1
  • T. Liu
    • 1
  • Z. Q. Xu
    • 1
  • X. G. Wang
    • 1
  • P. F. Yu
    • 1
  1. 1.School of Materials Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China

Personalised recommendations