Advertisement

Fabrication and enhanced dielectric constant of nanocomposite films based on polyimide and core–shell structured Al2O3@0.4mol%Nb-(Ba0.87Sr0.04Ca0.09)(Ti0.86Zr0.08Sn0.06)O3 nanoparticles

  • Xuemin Yu
  • Junchuan Wang
  • Ying Sun
  • Xueqin Zhang
  • Baoping LinEmail author
Article
  • 6 Downloads

Abstract

A series of nanocomposite films loaded with various concentrations of fillers were successfully synthesized by solution casting method (BSCTZS nanoparticles (NPs) as filler and polyimide (PI) as polymer matrix). To improve the dispersion and the physical–chemical properties of (Ba0.87Sr0.04Ca0.09)(Ti0.86Zr0.08Sn0.06)O3 (BSCTZS) NPs surface, BSCTZS NPs were modified by Al2O3 coating and modified Al2O3@Nb-BSCTZS NPs/PI nanocomposite films were prepared. The prepared modified Al2O3@Nb-BSCTZS NPs were characterized by X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM), and the dielectric properties of these composites were characterized in details. As a result, the nanocomposite films filled with 5 vol% Al2O3@0.4mol%Nb-BSCTZS nanoparticles exhibit an excellent energy density of 2.11 J cm−3 at 298 kV/mm, which is 48% over the original pristine PI (1.42 J cm−3 at 313 kV/mm). This work can provide a prospective solution for the preparation of composite film materials with high dielectric constant and high energy density.

Notes

Acknowledgements

This study was financially supported by National Natural Science Foundation of China (21304018 and 21374016) and Jiangsu Provincial Natural Science Foundation of China (BK20130619 and BK20130617).

References

  1. 1.
    S. Liu, J. Wang, B. Shen, J. Zhai, H. Hao, L. Zhao, Poly (vinylidene fluoride) nanocomposites with a small loading of core–shell structured BaTiO3@ Al2O3 nanofibers exhibiting high discharged energy density and efficiency. J. Alloys Compd. 696, 136–142 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.J. Wang, X.J. Wu, C.G. Feng, Preparation and dielectric property of Al2O3 surface coating modified BaTiO3/polyimide composite film. Adv. Mater. Res (Trans Tech Publications) 908, 63–66 (2014)Google Scholar
  3. 3.
    Y. Zhang, Q. Chi, L. Liu, T. Zhang, C. Zhang, Q. Chen, Q. Lei, PVDF-based dielectric composite films with excellent energy storage performances by design of nanofibers composition gradient structure. ACS Appl. Energy Mater. 1(11), 6320–6329 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Zhu, X. Huang, K. Yang, X. Zhai, J. Zhang, J. He, P. Jiang, Energy storage in ferroelectric polymer nanocomposites filled with core–shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS Appl. Mater. Interfaces. 6(22), 19644–19654 (2014)CrossRefGoogle Scholar
  5. 5.
    D. He, Y. Wang, X. Chen, Y. Deng, Core–shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Composites Part A Appl. Sci. Manuf. 93, 137–143 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Yang, X. Huang, J. He, P. Jiang, Strawberry-like core-shell Ag@ polydopamine@ BaTiO3 hybrid nanoparticles for high-k polymer nanocomposites with high energy density and low dielectric loss. Adv Mater. Interfaces 2(17), 1500361 (2015)CrossRefGoogle Scholar
  7. 7.
    J.W. Zha, H. Tong, Z.M. Dang, Electrospinning functional fillers/polymer composites with high energy storage. Dielectr. Polym. Mater. High-Density Energy Storage 2018, 289–321 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Liu, J. Wang, H. Hao, L. Zhao, J. Zhai, Discharged energy density and efficiency of nanocomposites based on poly (vinylidene fluoride) and core-shell structured BaTiO3@ Al2O3 nanoparticles. Ceram. Int. 44(18), 22850–22855 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Zhan, B. Cui, Y. Xing, R. Ma, Y. Xie, Z. Chang, F. Zhang, A novel process to synthesize high-k ‘Y5V’ nanopowder and ceramics. Ceram. Int. 38(1), 389–394 (2012)CrossRefGoogle Scholar
  10. 10.
    L. Yang, M. Cheng, W. Lyu, M. Shen, J. Qiu, H. Ji, Tunable piezoelectric performance of flexible PVDF based nanocomposites from MWCNTs/graphene/MnO2 three-dimensional architectures under low poling electric fields. Composites Part A Appl. Sci. Manuf. 107, 536–544 (2018)CrossRefGoogle Scholar
  11. 11.
    Z. Pan, L. Yao, J. Zhai, B. Shen, S. Liu, H. Wang, J. Liu, Excellent energy density of polymer nanocomposites containing BaTiO3@Al2O3 nanofibers induced by moderate interfacial area. J. Mater. Chem. A. 4(34), 13259–13264 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Zhu, X. Huang, K. Yang, X. Zhai, J. Zhang, J. He, P. Jiang, Energy storage in ferroelectric polymer nanocomposites filled with core–shell structured polymer@ BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS Appl. Mater. Interfaces 6(22), 19644–19654 (2014)CrossRefGoogle Scholar
  13. 13.
    S. Liu, J. Wang, B. Shen, J. Zhai, H. Hao, L. Zhao, Poly (vinylidene fluoride) nanocomposites with a small loading of core-shell structured BaTiO3@Al2O3 nanofibers exhibiting high discharged energy density and efficiency. J. Alloys Compd. 696, 136–142 (2017)CrossRefGoogle Scholar
  14. 14.
    Q. Chi, T. Ma, Y. Zhang, Q. Chen, C. Zhang, Y. Cui, Q. Lei, Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduction of the hybrid CoFe2O4@ BZT–BCT Nanofibers. ACS Sustain. Chem. Eng. 6(1), 403–412 (2017)CrossRefGoogle Scholar
  15. 15.
    H. Feng, X. Fang, X. Liu, Q. Pei, Z.K. Cui, S. Deng, Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability. Composites Part A Appl. Sci. Manuf. 109, 578–584 (2018)CrossRefGoogle Scholar
  16. 16.
    X. Huang, B. Sun, Y. Zhu, S. Li, P. Jiang, High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Prog. Mater Sci. 100, 187–225 (2019)CrossRefGoogle Scholar
  17. 17.
    Y. Chen, B. Lin, X. Zhang, J. Wang, C. Lai, Y. Sun, H. Yang, Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure. J. Mater. Chem. A. 2(34), 14118–14126 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead-free dielectric materials for energy storage. Mater. Res. Bull. 113, 190–201 (2019)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, L. Zhu, Polymer nanocomposites for electrical energy storage. J. Polym. Sci. Part B Polym. Phys. 49(20), 1421–1429 (2011)CrossRefGoogle Scholar
  20. 20.
    X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, C.W. Nan, Giant energy density and improved discharge efficiency of solution processed polymer nanocomposites for dielectric energy storage. Adv. Mater. (Weinheim, Ger.) 28(10), 2055–2061 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Wang, Y. Long, Y. Sun, X. Zhang, H. Yang, B. Lin, Fabrication and enhanced dielectric properties of polyimide matrix composites with core-shell structured CaCu3Ti4O12@TiO2 nanofibers. J. Mater. Sci. Mater. Electron. 29, 7842–7850 (2018)CrossRefGoogle Scholar
  22. 22.
    G. Wang, X. Huang, P. Jiang, Bio-inspired fluoro-polydopamine meets barium titanate nanowires: a perfect combination to enhance energy storage capability of polymer nanocomposites. ACS Appl. Mater. Interfaces 9(8), 7547–7555 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xuemin Yu
    • 1
  • Junchuan Wang
    • 1
  • Ying Sun
    • 1
  • Xueqin Zhang
    • 1
  • Baoping Lin
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingPeople’s Republic of China

Personalised recommendations