Advertisement

Effect of Fe-doping and post annealing temperature on the structural and optical properties of MoO3 nanosheets

  • Sapan Kumar SenEmail author
  • Tapash Chandra Paul
  • M. S. Manir
  • Supria Dutta
  • M. N. Hossain
  • Jiban Podder
Article
  • 46 Downloads

Abstract

In this article, pure and 5 wt% Fe-doped h-MoO3 nanosheets have been successfully synthesized using a hydrothermal method and annealed the 5 wt% Fe-doped sample at 200 °C and 300 °C. The influence of Fe-doping and post annealing temperature on the structural, morphological, elemental, functional and optical properties of the developed nanosheets has been investigated by XRD, FESEM, EDS, FTIR and UV–Vis–NIR spectrophotometer, respectively. The XRD results revealed that all samples are polycrystalline in nature with no impurities, although, after Fe incorporation the phase transformation behavior observed from hexagonal to mixed phases (hexagonal and orthorhombic) and after annealing it showed identical diffraction patterns. Scherrer method, Williamson–Hall analysis and Halder–Wagner method were used to investigate the crystallite size, lattice strain and dislocation density of the samples. A deterioration of crystallinity is obtained in crystallite size after Fe doping, which signifies the incorporation of Fe inside the MoO3 lattice network. The crystallinity improves gradually with increasing annealing temperature. The lattice strain and dislocation density showed reverse trend to crystallite size. All samples consist almost entirely of densely packed and randomly oriented nanosheets with an average width of 100–150 nm and length of 1000–1800 nm, confirmed from FESEM images. The iron incorporation in the h-MoO3 matrix is confirmed by EDX analysis. The FTIR spectra reveal the information about formation and stability of phase. The optical band gap becomes narrow from 2.83 to 2.70 eV after Fe-doping and then widens from 2.70 to 2.79 eV with increasing annealing temperature up to 300 °C.

Notes

Acknowledgements

We acknowledged the Institute of Electronics; Institute of Radiation and Polymer Technology, Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC), Dhaka, Bangladesh and also Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh, for their cordial supports.

Compliance with ethical standards

Conflict of interest

There is no conflict of interests present.

References

  1. 1.
    T. Dietl, Nat. Mater. 9, 965 (2010)CrossRefGoogle Scholar
  2. 2.
    H. Ohno, Nat. Publ. Gr. 9, 952 (2010)Google Scholar
  3. 3.
    J.K. Furdyna, J. Appl. Phys. 64, R29 (1988)CrossRefGoogle Scholar
  4. 4.
    J. Piao, L. Tseng, J. Yi, Chem. Phys. Lett. 649, 19 (2016)CrossRefGoogle Scholar
  5. 5.
    R. Song, A. Xu, B. Deng, Y. Fang, J. Phys. Chem. B 109, 22758 (2005)CrossRefGoogle Scholar
  6. 6.
    S.K. Sen, M. Noor, M.A. Al Mamun, M.S. Manir, M.A. Matin, M.A. Hakim, S. Nur, S. Dutta, Opt. Quantum Electron. 51, 82 (2019)CrossRefGoogle Scholar
  7. 7.
    A. Manivel, G.J. Lee, C.Y. Chen, J.H. Chen, S.H. Ma, T.L. Horng, J.J. Wu, Mater. Res. Bull. 62, 184 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, J. Phys. Chem. C 114, 21868 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Song, X. Ni, D. Zhang, H. Zheng, Solid State Sci. 8, 1164 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Chithambararaj, N. Rajeswari Yogamalar, A.C. Bose, Cryst. Growth Des. 16, 1984 (2016)CrossRefGoogle Scholar
  11. 11.
    G.P. Nagabhushana, D. Samrat, G.T. Chandrappa, RSC Adv. 4, 56784 (2014)CrossRefGoogle Scholar
  12. 12.
    X.W. Lou, H.C. Zeng, Chem. Mater. 14, 4781 (2002)CrossRefGoogle Scholar
  13. 13.
    N.A. Chernova, M. Roppolo, A.C. Dillon, M.S. Whittingham, J. Mater. Chem. 19, 2526 (2009)CrossRefGoogle Scholar
  14. 14.
    O. Mougin, J. Dubois, A. Rousset, J. Solid State Chem. 152, 353 (2000)CrossRefGoogle Scholar
  15. 15.
    Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, RSC Adv. 7, 28366 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Eftekhari, M.B. Rahmani, F. Masdarolomoor, J. Part. Sci. Technol. 2, 87 (2016)Google Scholar
  17. 17.
    A. Phuruangrat, U. Cheed-Im, T. Thongtem, S. Thongtem, Mater. Lett. 173, 158 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Li, W. Wang, Z. Zhao, X. Liu, P. Song, Mater. Sci. Semicond. Process. 66, 33 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Bai, C. Chen, D. Zhang, R. Luo, D. Li, A. Chen, C.C. Liu, Sens. Actuators B 204, 754 (2014)CrossRefGoogle Scholar
  20. 20.
    A.K. Kunhiraman, M. Ramasamy, J. Nanoparticle Res. 19, 203 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Boukhachem, M. Mokhtari, N. Benameur, A. Ziouche, M. Martínez, P. Petkova, M. Ghamnia, A. Cobo, M. Zergoug, M. Amlouk, Sens. Actuators A 253, 198 (2017)CrossRefGoogle Scholar
  22. 22.
    A. Phuruangrat, S. Thipkonglas, T. Thongtem, S. Thongtem, Mater. Lett. 195, 37 (2017)CrossRefGoogle Scholar
  23. 23.
    O. Kamoun, A. Boukhachem, M. Amlouk, S. Ammar, J. Alloys Compd. 687, 595 (2016)CrossRefGoogle Scholar
  24. 24.
    M.N.H. Mia, M.F. Pervez, M.K. Hossain, M. Reefaz Rahman, M.J. Uddin, M.A. Al Mashud, H.K. Ghosh, M. Hoq, Results Phys. 7, 2683 (2017)CrossRefGoogle Scholar
  25. 25.
    L. Cai, P.M. Rao, X. Zheng, Nano Lett. 11, 872 (2011)CrossRefGoogle Scholar
  26. 26.
    M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuators B 145, 13 (2010)CrossRefGoogle Scholar
  27. 27.
    C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, Sens. Actuators B 78, 119 (2001)CrossRefGoogle Scholar
  28. 28.
    H.C. Zeng, Inorg. Chem. 37, 1967 (1998)CrossRefGoogle Scholar
  29. 29.
    M. Yan, Y. Shen, L. Zhao, Z. Li, Mater. Res. Bull. 46, 1648 (2011)CrossRefGoogle Scholar
  30. 30.
    D. Parviz, M. Kazemeini, A.M. Rashidi, K. Jafari Jozani, J. Nanoparticle Res. 12, 1509 (2010)CrossRefGoogle Scholar
  31. 31.
    W. Dong, B. Dunn, J. Non. Cryst. Solids 225, 135 (1998)CrossRefGoogle Scholar
  32. 32.
    S. Tiwari, R. Master, R.J. Choudhary, D.M. Phase, B.L. Ahuja, J. Appl. Phys. 111, 073907 (2012)CrossRefGoogle Scholar
  33. 33.
    Q.Y. Ouyang, L. Li, Q.S. Wang, Y. Zhang, T.S. Wang, F.N. Meng, Y.J. Chen, P. Gao, Sens. Actuators B 169, 17 (2012)CrossRefGoogle Scholar
  34. 34.
    U. Alam, S. Kumar, D. Bahnemann, J. Koch, C. Tegenkamp, M. Muneer, Phys. Chem. Chem. Phys. 20, 4538 (2018)CrossRefGoogle Scholar
  35. 35.
    A. Chithambararaj, B. Winston, N.S. Sanjini, S. Velmathi, A.C. Bose, J. Nanosci. Nanotechnol. 15, 4913 (2015)CrossRefGoogle Scholar
  36. 36.
    P. Scherrer, Nachr Ges Wiss Goettingen Math-Phys Kl 1918, 98 (1918)Google Scholar
  37. 37.
    A. Gopala Krishna, R.V.S.S.N. Ravikumar, T. VijayaKumar, S. Daniel Ephraim, B. Ranjith, M. Pranoy, S. Dola, Mater. Today Proc. 3, 54 (2016)CrossRefGoogle Scholar
  38. 38.
    R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, Solid State Commun. 149, 1919 (2009)CrossRefGoogle Scholar
  39. 39.
    A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. Lond. 56, 174 (1944)CrossRefGoogle Scholar
  40. 40.
    P. Garg, R. Rai, B.K. Singh, Nucl. Inst. Methods Phys. Res. A 736, 128 (2014)CrossRefGoogle Scholar
  41. 41.
    C.N.J. Wagner, N. Haven, Acta Cryst. 20, 312 (1965)Google Scholar
  42. 42.
    J.B.D.P. Jr, W.R. Monteiro, M.A. Zacharias, J.A.J. Rodrigues, G.G. Cortez, Silicon 23, 517 (2006)Google Scholar
  43. 43.
    M.K. Hossain, A.A. Mortuza, S.K. Sen, M.K. Basher, M.W. Ashraf, S. Tayyaba, M.N.H. Mia, M.J. Uddin, Optik (Stuttg). 171, 507 (2018)CrossRefGoogle Scholar
  44. 44.
    P. Jittiarporn, L. Sikong, K. Kooptarnond, W. Taweepreda, Ceram. Int. 40, 13487 (2014)CrossRefGoogle Scholar
  45. 45.
    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci. Mater. Electron. 21, 343 (2010)CrossRefGoogle Scholar
  46. 46.
    M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016)CrossRefGoogle Scholar
  47. 47.
    L. Zheng, Y. Xu, D. Jin, Y. Xie, Chem. Mater. 21(23), 5681 (2009)CrossRefGoogle Scholar
  48. 48.
    Y. Chen, C. Lu, L. Xu, Y. Ma, W. Hou, J.J. Zhu, CrystEngComm 12, 3740 (2010)CrossRefGoogle Scholar
  49. 49.
    Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, Appl. Phys. Lett. 81, 5048 (2002)CrossRefGoogle Scholar
  50. 50.
    M.F. Hassan, Z.P. Guo, Z. Chen, H.K. Liu, J. Power Sources 195, 2372 (2010)CrossRefGoogle Scholar
  51. 51.
    A. Klinbumrung, T. Thongtem, S. Thongtem, J. Nanomater. 2012, 1 (2012)CrossRefGoogle Scholar
  52. 52.
    A. Chithambararaj, N.S. Sanjini, S. Velmathi, A. Chandra Bose, Phys. Chem. Chem. Phys. 15, 14761 (2013)CrossRefGoogle Scholar
  53. 53.
    Y. Muraoka, J.-C. Grenier, S. Petit, M. Pouchard, Solid State Sci. 1, 133 (1999)CrossRefGoogle Scholar
  54. 54.
    A. Hojabri, F. Hajakbari, A.E. Meibodi, J. Theor. Appl. Phys. 9, 67 (2015)CrossRefGoogle Scholar
  55. 55.
    T. Xia, Q. Li, X. Liu, J. Meng, X. Cao, J. Phys. Chem. B 110, 2006 (2006)CrossRefGoogle Scholar
  56. 56.
    R.K. Willardson, A.C. Beer, Optical Properties of 111-V Compounds (Academic Press, New York, 1967)Google Scholar
  57. 57.
    G.G. Martin Dressel, Electrodynamics of Solids Optical Properties of Electron in Matter (University Press, Cambridge, 2002)CrossRefGoogle Scholar
  58. 58.
    M. Itoh, K. Hayakawa, S. Oishi, J. Phys. Condens. Matter 13, 6853 (2001)CrossRefGoogle Scholar
  59. 59.
    S.K. Deb, J.A. Chopoorian, J. Appl. Phys. 37, 4818 (1966)CrossRefGoogle Scholar
  60. 60.
    R.A. Rakkesh, S. Balakumar, J. Nanosci. Nanotechnol. 15, 4316 (2015)CrossRefGoogle Scholar
  61. 61.
    O.M.H.K.V. Madhuri, K. Sinivasarao, S. Uthanna, B.S. Naidu, J. Indian Inst. Sci. 81, 653 (2001)Google Scholar
  62. 62.
    H. Moradi, A. Eshaghi, S.R. Hosseini, K. Ghani, Ultrason. Sonochem. 32, 314 (2016)CrossRefGoogle Scholar
  63. 63.
    W. Zhou, Y. Liu, Y. Yang, P. Wu, J. Phys. Chem. C 118, 6448 (2014)CrossRefGoogle Scholar
  64. 64.
    B.M. Haque, D.B. Chandra, P. Jiban, I. Nurul, Z. Abdullah, Mater. Sci. Semicond. Process. 89, 223 (2018)CrossRefGoogle Scholar
  65. 65.
    Y.J. Lee, W.T. Nichols, D.G. Kim, Y. DoKim, J. Phys. D 42, 115419 (2009)CrossRefGoogle Scholar
  66. 66.
    J. Okumu, F. Koerfer, C. Salinga, T.P. Pedersen, M. Wuttig, Thin Solid Films 515, 1327 (2006)CrossRefGoogle Scholar
  67. 67.
    S. Uthanna, V. Madhavi, P. Kondaiah, S.S. Rayudu, O.M. Hussain, Mater. Express 3, 135 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electronics, Atomic Energy Research EstablishmentBangladesh Atomic Energy CommissionDhakaBangladesh
  2. 2.Department of PhysicsJagannath UniversityDhakaBangladesh
  3. 3.Institute of Radiation and Polymer Technology, Atomic Energy Research EstablishmentBangladesh Atomic Energy CommissionDhakaBangladesh
  4. 4.Ministry of Education, Government of the People’s Republic of BangladeshDhakaBangladesh
  5. 5.Department of Glass & Ceramic EngineeringBangladesh University of Engineering & TechnologyDhakaBangladesh
  6. 6.Department of PhysicsBangladesh University of Engineering & TechnologyDhakaBangladesh

Personalised recommendations