Advertisement

Poly(α-methylstyrene) polymer and small-molecule semiconductor blend with reduced crystal misorientation for organic thin film transistors

  • Zhengran HeEmail author
  • Ziyang Zhang
  • Kyeiwaa Asare-Yeboah
  • Sheng Bi
Article
  • 10 Downloads

Abstract

The electrical performance of solution-processed, small-molecule organic semiconductors is largely restricted by their severe charge carrier mobility variations. In this work, we demonstrate an effective method to reduce such variations of the semiconductor mobilities and improve the performance consistency of organic thin film transistors (OTFTs) by adding poly(α-methylstyrene) (PαMS) as a polymer additive. By using 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) as an example, we found that while pristine TIPS pentacene film exhibited random crystal orientation and large film gaps, the addition of PαMS polymer promoted the growth of semiconductor crystals, which formed uniformly aligned needles with significantly improved orientation and coverage within the channel regions. An ultra-low misorientation angle of 2.2° ± 1° was obtained from TIPS pentacene/PαMS blend film, which is a 20-fold reduction as compared to pristine TIPS pentacene. Bottom-gate, top-contact OTFTs with TIPS pentacene crystals aligned perpendicularly from source to drain contact electrodes demonstrated a hole mobility of up to 0.26 cm2/V s, as well a 6-fold enhancement of average mobility as compared to the pristine TIPS pentacene based counterparts. Notably, the addition of PαMS led to a performance consistency factor of 3.35, as defined by the ratio of the average mobility to standard deviation, implying a great reduction of charge carrier mobility variations. The improvement of electrical performance of OTFTs can be attributed to the combined outcome of crystal rigid alignment, extended long-range order, and almost full coverage of charge transport channel.

Notes

Acknowledgements

S. Bi would like to thank Dalian University of Technology, China DUT16RC(3)051.

References

  1. 1.
    S. Bi, Y. Li, Z.R. He, Z.L. Ouyang, Q.L. Guo, C.M. Jiang, Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org. Electron. 65, 96–99 (2019)CrossRefGoogle Scholar
  2. 2.
    J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho, S. Jung, Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. (2019).  https://doi.org/10.1038/s41467-018-07904-5 Google Scholar
  3. 3.
    S. Bi, Q. Li, Y. Yan, K. Asare-Yeboah, T. Ma, C. Tang, Z. Ouyang, Z. He, Y. Liu, C. Jiang, Layer-dependent anisotropic frictional behavior in two-dimensional monolayer hybrid perovskite/ITO layered heterojunctions. Phys. Chem. Chem. Phys. 21, 2540–2546 (2019)CrossRefGoogle Scholar
  4. 4.
    U. Jeong, G. Tarsoly, J. Lee, Y. Eun, J. Do, S. Pyo, Interdigitated ambipolar active layer for organic phototransistor with balanced charge transport. Adv. Electron. Mater. (2019).  https://doi.org/10.1002/aelm.201800652 Google Scholar
  5. 5.
    H. Li, Z. He, Z. Ouyang, S. Palchoudhury, C.W. Ingram, I.I. Harruna, D. Li, Modifying electrical and magnetic properties of single-walled carbon nanotubes by decorating with iron oxide nanoparticles. J. Nanosci. Nanotechnol. (2020).  https://doi.org/10.1166/jnn.2020.17215 Google Scholar
  6. 6.
    Z.R. Wang, Y. Zou, W.Q. Chen, Y.J. Huang, C.J. Yao, Q.C. Zhang, The role of weak molecular dopants in enhancing the performance of solution-processed organic field-effect transistors. Adv. Electron. Mater. (2019).  https://doi.org/10.1002/aelm.201800547 Google Scholar
  7. 7.
    Z.R. He, N. Lopez, X.L. Chi, D.W. Li, Solution-based 5,6,11,12-tetrachlorotetracene crystal growth for high-performance organic thin film transistors. Org. Electron. 22, 191–196 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Chu, J.X. Fan, S.J. Yang, D. Liu, C.F. Ng, H.L. Dong, A.M. Ren, Q. Miao, Halogenated tetraazapentacenes with electron mobility as high as 27.8 cm2 V−1 s−1 in solution-processed n-channel organic thin-film transistors. Adv. Mater. (2018).  https://doi.org/10.1002/adma.201803467 Google Scholar
  9. 9.
    C.Y. Wong, B.L. Cotts, H. Wu, N.S. Ginsberg, Exciton dynamics reveal aggregates with intermolecular order at hidden interfaces in solution-cast organic semiconducting films. Nat. Commun. 6, 7 (2015)CrossRefGoogle Scholar
  10. 10.
    Z. He, J. Chen, D. Li, Review Article: crystal alignment for high performance organic electronics devices. J. Vac. Sci. Technol. A 37, 040801 (2019)CrossRefGoogle Scholar
  11. 11.
    X.Y. Zheng, H. Geng, Y.P. Yi, Q.K. Li, Y.Q. Jiang, D. Wang, Z.G. Shuai, Understanding lattice strain-controlled charge transport in organic semiconductors: a computational study. Adv. Funct. Mater. 24, 5531–5540 (2014)CrossRefGoogle Scholar
  12. 12.
    B.Y. Peng, S.Y. Huang, Z.W. Zhou, P.K.L. Chan, Solution-processed monolayer organic crystals for high-performance field-effect transistors and ultrasensitive gas sensors. Adv. Funct. Mater. 27, 1700999 (2017)CrossRefGoogle Scholar
  13. 13.
    C.T. da Rocha, K. Haase, Y.C. Zheng, M. Loffler, M. Hambsch, S.C.B. Mannsfeld, Solution coating of small molecule/polymer blends enabling ultralow voltage and high-mobility organic transistors. Adv. Electron. Mater. 4, 1800141 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Asare-Yeboah, R.M. Frazier, G. Szulczewski, D. Li, Temperature gradient approach to grow large, preferentially oriented 6,13-bis(triisopropylsilylethynyl) pentacene crystals for organic thin film transistors. J. Vac. Sci. Technol. B 32, 052401 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. He, K. Asare-Yeboah, Z. Zhang, S. Bi, Self-assembly crystal microribbons with nucleation additive for high-performance organic thin film transistors. Jpn. J. Appl. Phys. (2019).  https://doi.org/10.7567/1347-4065/ab1bae Google Scholar
  16. 16.
    Z.R. He, K. Xiao, W. Durant, D.K. Hensley, J.E. Anthony, K.L. Hong, S.M. Kilbey, J.H. Chen, D.W. Li, Enhanced performance consistency in nanoparticle/TIPS pentacene-based organic thin film transistors. Adv. Funct. Mater. 21, 3617–3623 (2011)CrossRefGoogle Scholar
  17. 17.
    Z. He, Z. Zhang, S. Bi, Polyacrylate polymer assisted crystallization: improved charge transport and performance consistency for solution-processable small-molecule semiconductor based organic thin film transistors. J. Sci. Adv. Mater. Devices (2019).  https://doi.org/10.1016/j.jsamd.2019.02.004 Google Scholar
  18. 18.
    K. Asare-Yeboah, S. Bi, Z.R. He, D.W. Li, Temperature gradient controlled crystal growth from TIPS pentacene-poly(alpha-methyl styrene) blends for improving performance of organic thin film transistors. Org. Electron. 32, 195–199 (2016)CrossRefGoogle Scholar
  19. 19.
    S. Bi, Z.R. He, J.H. Chen, D.W. Li, Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors. AIP Adv. 5, 077170 (2015)CrossRefGoogle Scholar
  20. 20.
    J.H. Chen, M. Shao, K. Xiao, Z.R. He, D.W. Li, B.S. Lokitz, D.K. Hensley, S.M. Kilbey, J.E. Anthony, J.K. Keum, A.J. Rondinone, W.Y. Lee, S.Y. Hong, Z.A. Bao, Conjugated polymer-mediated polymorphism of a high performance, small-molecule organic semiconductor with tuned intermolecular interactions, enhanced long-range order, and charge transport. Chem. Mater. 25, 4378–4386 (2013)CrossRefGoogle Scholar
  21. 21.
    T. Ohe, M. Kuribayashi, R. Yasuda, A. Tsuboi, K. Nomoto, K. Satori, M. Itabashi, J. Kasahara, Solution-processed organic thin-film transistors with vertical nanophase separation. Appl. Phys. Lett. 93, 3 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Kang, N. Shin, D.Y. Jang, V.M. Prabhu, D.Y. Yoon, Structure and properties of small molecule-polymer blend semiconductors for organic thin film transistors. J. Am. Chem. Soc. 130, 12273–12275 (2008)CrossRefGoogle Scholar
  23. 23.
    Z.R. He, D.W. Li, D.K. Hensley, A.J. Rondinone, J.H. Chen, Switching phase separation mode by varying the hydrophobicity of polymer additives in solution-processed semiconducting small-molecule/polymer blends. Appl. Phys. Lett. 103, 113301 (2013)CrossRefGoogle Scholar
  24. 24.
    M.B. Madec, D. Crouch, G.R. Llorente, T.J. Whittle, M. Geoghegan, S.G. Yeates, Organic field effect transistors from ambient solution processed low molar mass semiconductor-insulator blends. J. Mater. Chem. 18, 3230–3236 (2008)CrossRefGoogle Scholar
  25. 25.
    D.T. James, B.K.C. Kjellander, W.T.T. Smaal, G.H. Gelinck, C. Combe, I. McCulloch, R. Wilson, J.H. Burroughes, D.D.C. Bradley, J.S. Kim, Thin-film morphology of inkjet-printed single-droplet organic transistors using polarized Raman spectroscopy: effect of blending TIPS-pentacene with insulating polymer. ACS Nano 5, 9824–9835 (2011)CrossRefGoogle Scholar
  26. 26.
    X.R. Li, W.T.T. Smaal, C. Kjellander, B. van der Putten, K. Gualandris, E.C.P. Smits, J. Anthony, D.J. Broer, P.W.M. Blom, J. Genoe, G. Gelinck, Charge transport in high-performance ink-jet printed single-droplet organic transistors based on a silylethynyl substituted pentacene/insulating polymer blend. Org. Electron. 12, 1319–1327 (2011)CrossRefGoogle Scholar
  27. 27.
    S.Y. Cho, J.M. Ko, J. Lim, J.Y. Lee, C. Lee, Inkjet-printed organic thin film transistors based on TIPS pentacene with insulating polymers. J. Mater. Chem. C 1, 914–923 (2013)CrossRefGoogle Scholar
  28. 28.
    P.F. Moonen, B. Vratzov, W.T.T. Smaal, G.H. Gelinck, M. Peter, E.R. Meinders, J. Huskens, A common gate thin film transistor on poly(ethylene naphthalate) foil using step-and-flash imprint lithography. Org. Electron. 12, 2207–2214 (2011)CrossRefGoogle Scholar
  29. 29.
    M.B. Madec, P.J. Smith, A. Malandraki, N. Wang, J.G. Korvink, S.G. Yeates, Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. J. Mater. Chem. 20, 9155–9160 (2010)CrossRefGoogle Scholar
  30. 30.
    Y.B. Yuan, G. Giri, A.L. Ayzner, A.P. Zoombelt, S.C.B. Mannsfeld, J.H. Chen, D. Nordlund, M.F. Toney, J.S. Huang, Z.N. Bao, Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 4005 (2014)CrossRefGoogle Scholar
  31. 31.
    M. Park, Y. Min, Y.J. Lee, U. Jeong, Growth of long triisopropylsilylethynyl pentacene (TIPS-PEN) nanofibrils in a polymer thin film during spin-coating. Macromol. Rapid Commun. 35, 655–660 (2014)CrossRefGoogle Scholar
  32. 32.
    Z.R. He, J.H. Chen, J.K. Keum, G. Szulczewski, D.W. Li, Improving performance of TIPS pentacene-based organic thin film transistors with small-molecule additives. Org. Electron. 15, 150–155 (2014)CrossRefGoogle Scholar
  33. 33.
    J.H. Chen, S. Subramanian, S.R. Parkin, M. Siegler, K. Gallup, C. Haughn, D.C. Martin, J.E. Anthony, The influence of side chains on the structures and properties of functionalized pentacenes. J. Mater. Chem. 18, 1961–1969 (2008)CrossRefGoogle Scholar
  34. 34.
    J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin, Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001)CrossRefGoogle Scholar
  35. 35.
    Z. He, Z. Zhang, S. Bi, Nanoscale alignment of semiconductor crystals for high-fidelity organic electronics applications. Appl. Nanosci. (2019).  https://doi.org/10.1007/s13204-019-01068-4 Google Scholar
  36. 36.
    Z.R. He, J.H. Chen, Z.Z. Sun, G. Szulczewski, D.W. Li, Air-flow navigated crystal growth for TIPS pentacene-based organic thin-film transistors. Org. Electron. 13, 1819–1826 (2012)CrossRefGoogle Scholar
  37. 37.
    J.H. Chen, C.K. Tee, M. Shtein, J. Anthony, D.C. Martin, Grain-boundary-limited charge transport in solution-processed 6,13 bis(tri-isopropylsilylethynyl) pentacene thin film transistors. J. Appl. Phys. 103, 114513 (2008)CrossRefGoogle Scholar
  38. 38.
    J.H. Chen, C.K. Tee, M. Shtein, D.C. Martin, J. Anthony, Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Org. Electron. 10, 696–703 (2009)CrossRefGoogle Scholar
  39. 39.
    Y.H. Kim, J.E. Anthony, S.K. Park, Polymer blended small molecule organic field effect transistors with improved device-to-device uniformity and operational stability. Org. Electron. 13, 1152–1157 (2012)CrossRefGoogle Scholar
  40. 40.
    Z.R. He, S. Shaik, S. Bi, J.H. Chen, D.W. Li, Air-stable solution-processed n-channel organic thin film transistors with polymer-enhanced morphology. Appl. Phys. Lett. 106, 183301 (2015)CrossRefGoogle Scholar
  41. 41.
    Z.A. Lamport, K.J. Barth, H. Lee, E. Gann, S. Engmann, H. Chen, M. Guthold, I. McCulloch, J.E. Anthony, L.J. Richter, D.M. DeLongchamp, O.D. Jurchescu, A simple and robust approach to reducing contact resistance in organic transistors. Nat. Commun. (2018).  https://doi.org/10.1038/s41467-018-07388-3 Google Scholar
  42. 42.
    C. Liu, Y. Xu, Y.Y. Noh, Contact engineering in organic field-effect transistors. Mater. Today 18, 79–96 (2015)CrossRefGoogle Scholar
  43. 43.
    R.M. Lu, Y. Han, W.M. Zhang, X.X. Zhu, Z.P. Fei, T. Hodsden, T.D. Anthopoulos, M. Heeney, Alkylated indacenodithieno 3,2-b thiophene-based all donor ladder-type conjugated polymers for organic thin film transistors. J. Mater. Chem. C 6, 2004–2009 (2018)CrossRefGoogle Scholar
  44. 44.
    D.H. Kim, D.Y. Lee, H.S. Lee, W.H. Lee, Y.H. Kim, J.I. Han, K. Cho, High-mobility organic transistors based on single-crystalline microribbons of triisopropylsilylethynyl pentacene via solution-phase self-assembly. Adv. Mater. 19, 678–682 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Murtaza, I. Ahmad, H.Z. Chen, J.K. Wu, Study of 6,13-bis(tri-isopropylsilylethynyl) pentacene (TIPS-pentacene crystal) based organic field effect transistors (OFETs). Synth. Met. 194, 146–152 (2014)CrossRefGoogle Scholar
  46. 46.
    D.H. Kim, D.Y. Lee, S.G. Lee, K. Cho, High-mobility organic single-crystal microtubes of soluble pentacene semiconductors with hollow tetragonal structures. Chem. Mater. 24, 2752–2756 (2012)CrossRefGoogle Scholar
  47. 47.
    Z. He, Z. Zhang, S. Bi, Long-range crystal alignment with polymer additive for organic thin film transistors. J. Polym. Res. (2019).  https://doi.org/10.1007/s10965-10019-11842-10961 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringThe University of AlabamaTuscaloosaUSA
  2. 2.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  3. 3.Electrical and Computer EngineeringPenn State BehrendErieUSA
  4. 4.Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education, and Institute of Photoelectric Nanoscience and NanotechnologyDalian University of TechnologyDalianChina

Personalised recommendations