Advertisement

Facile approach to prepare ZnO@SiO2 nanomaterials for photocatalytic degradation of some organic pollutant models

  • M. F. Abdel Messih
  • Ahmed E. ShalanEmail author
  • Mohamed F. Sanad
  • M. A. Ahmed
Article
  • 42 Downloads

Abstract

Band gap energy narrowing upon doping is consider as a general phenomenon in semiconductors. However, low surface area still the main problem that limits its wide applications. Herein, incorporation of ZnO on the surface and inside the matrix of SiO2 using CTAB as structural and capping agent have prepared via sol–gel wet chemical pathway. The crystalline size, structural and textural properties of the obtained samples were investigated through different techniques like XRD, SBET surface area, UV–Vis spectroscopy, FESEM and TEM. The results indicate that the surface area and pore volume constant decrease by insertion of ZnO nanoparticles in the pore wall and/or above the surface of silica. In the other hand, the organic materials removal enhanced due to the existence of different types of pores ranging from microspores to wide mesoporous system. Following the nanomaterials preparation and characterizations, some experiments have done to check the effect on the organic materials like dyes removal. One of these tests is COD result, which affirm the good degradation for most of MB dye that exist in the solution. Furthermore, the scavenger study results show that the ZnO@SiO2 nanomaterials displayed good photocatalytic properties compared to the bare silica one via its charge carrier and reactive hydroxyl radicals species. The scrutinization at the features of the obtained materials enable us to offering without doubt a promising photocatalyst candidate for different applications in wastewater and water treatment.

Notes

References

  1. 1.
    A. Akyol, H.C. Yatmaz, M. Bayramoglu, Appl. Catal. B 54, 19–24 (2004)CrossRefGoogle Scholar
  2. 2.
    E. Alzahrani, Am. J. Anal. Chem. 8, 95 (2017)CrossRefGoogle Scholar
  3. 3.
    M.R. Andreozzi, V. Caprio, A. Insola, Catal. Today 53, 51–53 (1999)CrossRefGoogle Scholar
  4. 4.
    D. Baderna, S. Maggioni, E. Boriani, S. Gemma, M. Molteni, A. Lombardo, A. Colombo, S. Bordonali, G. Rotella, M. Lodi, E. Benfenati, Environ. Res. 111, 603–613 (2011)CrossRefGoogle Scholar
  5. 5.
    M. Barba, A. Mazza, C. Guerriero, M.D. Maio, F. Romeo, P. Maranta, I.R. Marino, M.G. Paggi, A. Giordano, Cancer Biol. Ther. 12, 106–111 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Botta, J. Navı́o, M. Hidalgo, J. Photochem. Photobiol. A 129, 89–99 (1999)CrossRefGoogle Scholar
  7. 7.
    M. Burgos, M. Langlet, J. Sol-Gel. Sci. Technol. 16, 267–276 (1999)CrossRefGoogle Scholar
  8. 8.
    A.R.O. Carp, C.L. Huisman, Solid State Chem. 32, 33–177 (2004)CrossRefGoogle Scholar
  9. 9.
    S.F. Chen, W. Zhao, W. Liu, S.J. Zhang, Appl. Surf. Sci. 255, 2478–2484 (2008)CrossRefGoogle Scholar
  10. 10.
    V.M. Menéndez-Flores, D.W. Bahnemann, T. Ohno, Appl. Catal. B 103, 99–108 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Hazarika, I. Saikia, J. Das, C. Tamuly, M.R. Das, Mater. Lett. 164, 480–483 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Hepel, J. Luo, Electrochim. Acta 47, 729–740 (2001)CrossRefGoogle Scholar
  13. 13.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  14. 14.
    D. Hufschmidt, D. Bahnemann, J.J. Testa, C.A. Emilio, M.I. Litter, J. Photochem. Photobiol. A 148, 223–231 (2002)CrossRefGoogle Scholar
  15. 15.
    K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A 134, 139–142 (2000)CrossRefGoogle Scholar
  16. 16.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581–590 (2007)CrossRefGoogle Scholar
  17. 17.
    A.A. Khassin, T.M. Yurieva, V.V. Kaichev, V.I. Bukhtiyarov, A.A. Budneva, E.A. Paukshtis, V.N. Parmon, J. Mol. Catal. A 175, 189–204 (2001)CrossRefGoogle Scholar
  18. 18.
    S. Kment, H. Kmentova, P. Kluson, J. Krysa, Z. Hubicka, V. Cirkva, I. Gregora, O. Solcova, L. Jastrabik, J. Colloid Interface Sci. 348, 198–205 (2010)CrossRefGoogle Scholar
  19. 19.
    A.N. El-Shazly, A.E. Shalan, M.M. Rashad, E.A. Abdel-Aal, I.A. Ibrahim, M.F. El-Shahat, RSC Adv. 8, 24059–24067 (2018)CrossRefGoogle Scholar
  20. 20.
    J.C. Lee, S. Park, H.-J. Park, J.-H. Lee, H.-S. Kim, Y.-J. Chung, J. Electroceram. 22, 110–113 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Liu, X. Wang, F. Yang, X. Yang, Microporous Mesoporous Mater. 114, 431–439 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Catal. Today 76, 235–246 (2002)CrossRefGoogle Scholar
  23. 23.
    A.N. El-Shazly, M.M. Rashad, E.A. Abdel-Aal, I.A. Ibrahim, M.F. El-Shahat, A.E. Shalan, J. Environ. Chem. Eng. 4, 3177–3184 (2016)CrossRefGoogle Scholar
  24. 24.
    M.C. Wu, A. Sápi, A. Avila, M. Szabó, J. Hiltunen, M. Huuhtanen, G. Tóth, Á. Kukovecz, Z. Kónya, R. Keiski, W.-F. Su, H. Jantunen, K. Kordás, Nano Res. 4, 360–369 (2011)CrossRefGoogle Scholar
  25. 25.
    A.E. Shalan, M. Rasly, M.M. Rashad, J. Mater. Sci. 25, 3141–3146 (2014)Google Scholar
  26. 26.
    S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Prog. Polym. Sci. 38, 1232–1261 (2013)CrossRefGoogle Scholar
  27. 27.
    M.M. Rashad, E.M. Elsayed, M.S. Al-Kotb, A.E. Shalan, J. Alloy. Compd. 581, 71–78 (2013)CrossRefGoogle Scholar
  28. 28.
    G.L. Puma, A. Bono, D. Krishnaiah, J.G. Collin, J. Hazard Mater. 157, 209–219 (2008)CrossRefGoogle Scholar
  29. 29.
    P.B.S. Ratna, Int. J. Environ. Sci. 3, 940–955 (2002)Google Scholar
  30. 30.
    S.B. Sadale, S.M. Chaqour, O. Gorochov, M. Neumann-Spallart, Mater. Res. Bull. 43, 1472–1479 (2008)CrossRefGoogle Scholar
  31. 31.
    M.F. Sanad, S. Nabih, M.A. Goda, J. Nanomed. Nanotechnol. 9, 135–142 (2018)CrossRefGoogle Scholar
  32. 32.
    M.F. Sanad, A.E. Shalan, S.M. Bazid, S.M. Abdelbasir, J. Environ. Chem. Eng. 6, 3981–3990 (2018)CrossRefGoogle Scholar
  33. 33.
    M.M.S. Sanad, A.E. Shalan, M.M. Rashad, M.H.H. Mahmoud, Appl. Surf. Sci. 359, 315–322 (2015)CrossRefGoogle Scholar
  34. 34.
    S. Nabih, A.S. Shalan, E.S.A. Serea, M.A. Goda, M.F. Sanad, J. Mater. Sci. 30, 9623–9633 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  2. 2.Central Metallurgical Research and Development InstituteHelwanEgypt
  3. 3.Physics Department, Faculty of ScienceTexas University at El PasoEl PasoUSA

Personalised recommendations