Effect of the mercaptan alkyl chain structure on the structure and electrochemical properties of Au-doped mesoporous carbon materials

  • Ping Zhang
  • Min Zhou
  • Jianyu Su
  • Wei XiongEmail author
  • Shantang LiuEmail author


A good chelating agent such as mercaptan plays an important role in the synthesis of gold nanoparticles (AuNPs) or Au-doped carbon nano-composites. Herein, a synchronous carbonization-reduction method was employed to synthetize stable and monodispersed AuNPs embedded in the mesoporous carbon framework. A phenolic resin, mercaptan, and HAuCl4 acted as a carbon source, coordination agent, and gold source, respectively. The effect of the mercaptan chain length on the size of AuNPs and the pore structure of the mesoporous carbon materials was systematically studied. Ultraviolet spectrum analysis revealed that the coordination shifted from Cl–Au to S–Au depending on the mercaptan added to the reaction system. The as-prepared gold nanoparticles@mesoporous carbon materials (AuNPs@MPCs) were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, and N adsorption–desorption. The size of the AuNPs (3.71–12.86 nm) was controlled by changing the alkyl chain length of the mercaptans. The specific surface areas of the obtained AuNPs@MPCs increased from 1440 to 1603 m2/g as the mercaptan chain length increased. Square-wave stripping voltammetry (SWASV) tests on a typical MPTMS-AuNPs@MPC/GCE modified electrode revealed good detection response towards Pb2+, with a limit detection as low as 1.96 nM (S/N = 3). This detection limit was significantly lower than the value provided by the World Health Organization. This electrode also showed a relative wide linear detection range (0–2 μM). This good performance was ascribed to the excellent conductivity of AuNPs and the high specific surface area of the carbon materials. This work provides a new research strategy for the one-step synthesis of AuNPs@carbon materials with controllable NP size by using mercaptans with different alkyl chain structure. It can be believe that this approach could be expanded to nano-metal materials other than Au.



This work was financially supported by the National Natural Science Foundation of China (No. 21703161), the Science Research Foundation of Wuhan Institute of Technology, and the 10th Graduate Innovative Fund of Wuhan Institute of Technology (No. CX2018148).


  1. 1.
    N. Ratner, D. Mandler, Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Anal. Chem. 87, 5148–5155 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Zhao, X. Fang, Y. Gu, X. Yan, Z. Kang, X. Zheng, P. Lin, L. Zhao, Y. Zhang, Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids Surf. B 126, 476–480 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Allafchian, S.Z. Mirahmadi-Zare, M. Gholamian, Determination of trace lead detection in a sample solution by liquid three-phase microextraction-anodic stripping voltammetry. IEEE Sens. J. 17, 2856–2862 (2017)CrossRefGoogle Scholar
  4. 4.
    J.R. Guo, K.S. Suslick, Gold nanoparticles encapsulated in porous carbon. Chem. Commun. 48, 11094–11096 (2012)CrossRefGoogle Scholar
  5. 5.
    X.H. Niu, Z.L. Mo, R.R. Hu, H.H. Gao, Z.L. Li, Tryptophan non-covalent modification of reduced graphene oxide for sensitive detection of Cu2+. J. Mater. Sci. 28, 9634–9641 (2017)Google Scholar
  6. 6.
    M. Ranjbar, S.N. Masoud, H.S.M. Mashkani, K. Venkateswara-Rao, Solvothermal synthesis and characterization of hollow sphere-like ZnS/ZnAl2S4 nanocomposites. J. Inorg. Organomet. Polym Mater. 22, 1122–1127 (2012)CrossRefGoogle Scholar
  7. 7.
    W.Q. Wu, M.M. Jia, Z.Z. Wang, W. Zhang, Q. Zhang, G.Z. Liu, Z.W. Zhang, P.W. Li, Simultaneous voltammetric determination of cadmium(II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (Fe3O4) nanoparticles and fluorinated multiwalled carbon nanotubes. Microchim. Acta 186, 97 (2019)CrossRefGoogle Scholar
  8. 8.
    A. Pandikumar, R. Ramaraj, Aminosilicate sol–gel embedded core–shell (TiO2–Au) (nps) nanomaterials modified electrode for the electrochemical detection of nitric oxide. Indian J. Chem. A 50, 1388–1393 (2011)Google Scholar
  9. 9.
    H. Zou, F. Zhang, H. Wang, J. Xia, L. Gao, Z. Wang, Au nanoparticles supported on functionalized two-dimensional titanium carbide for the sensitive detection of nitrite. New J. Chem. 43, 2464–2470 (2019)CrossRefGoogle Scholar
  10. 10.
    C. Li, J. Li, H. Tang, X. Yang, Q. Fei, C. Sun, A non-enzymatic electrochemical biosensor based on SiO2–Au nanoparticles for hemoglobin detection. Anal. Methods-UK 9, 1265–1272 (2017)CrossRefGoogle Scholar
  11. 11.
    X. Wang, Y. Zheng, L. Xu, An electrochemical adenine sensor employing enhanced three-dimensional conductivity and molecularly imprinted sites of Au NPs bridged poly(3-thiophene acetic acid). Sens. Actuators B 255, 2952–2958 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Ju, W. Chen, In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal. Chem. 87, 1903–1910 (2015)CrossRefGoogle Scholar
  13. 13.
    D.F. Xue, D. Zhu, W. Xiong, T. Cao, Z. Wang, Y. Lv, L. Li, M. Liu, L. Gan, Template-free, self-doped approach to porous carbon spheres with high N/O contents for high-performance supercapacitors. ACS Sustain. Eng. 7, 7024–7034 (2019)CrossRefGoogle Scholar
  14. 14.
    Y. Zuo, J. Xu, X. Zhu, X. Duan, L. Lu, Y. Yu, Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review. Microchim. Acta 186, 171 (2019)CrossRefGoogle Scholar
  15. 15.
    Z. Song, L. Li, D. Zhu, L. Miao, H. Duan, Z. Wang, W. Xiong, Y. Lv, M. Liu, L. Gan, Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. J. Mater. Chem. A 7, 816–826 (2019)CrossRefGoogle Scholar
  16. 16.
    Z. Song, D. Zhu, L. Li, T. Chen, H. Duan, Z. Wang, Y. Lv, W. Xiong, M. Liu, L. Gan, Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. J. Mater. Chem. A 7, 1177–1186 (2019)CrossRefGoogle Scholar
  17. 17.
    L. Prati, A. Villa, A.R. Lupini, G.M. Veith, Gold on carbon: one billion catalysts under a single label. Phys. Chem. Chem. Phys. 14, 2969–2978 (2012)CrossRefGoogle Scholar
  18. 18.
    M.Y. Ding, R. Zheng, Preparation of amino-functionalized multiwall carbon nanotube/gold nanoparticle composites. Chin. J. Chem. 28, 208–212 (2010)CrossRefGoogle Scholar
  19. 19.
    N. Li, Q. Xu, M. Zhou, W. Xia, X. Chen, M. Bron, W. Schuhmann, M. Muhler, Ethylenediamine-anchored gold nanoparticles on multi-walled carbon nanotubes: synthesis and characterization. Electrochem. Commun. 12, 939–943 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Goguet, C. Hardacre, I. Harvey, K. Narasimharao, Y. Saih, J. Sa, Increased dispersion of supported gold during methanol carbonylation conditions. J. Am. Chem. Soc. 131, 6973 (2009)CrossRefGoogle Scholar
  21. 21.
    P.J.G. Goulet, R.B. Lennox, New insights into brust-schiffrin metal nanoparticle synthesis. J. Am. Chem. Soc. 132, 9582–9584 (2010)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, D. Yao, L. Shen, H. Zhang, X. Zhang, B. Yang, Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals. J. Am. Chem. Soc. 134, 7207–7210 (2012)CrossRefGoogle Scholar
  23. 23.
    S. Wang, Q. Zhao, H. Wei, J.-Q. Wang, M. Cho, H.S. Cho, O. Terasaki, Y. Wan, Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J. Am. Chem. Soc. 135, 11849–11860 (2013)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, B. Tan, I. Hussain, N. Schaeffer, M.F. Wyatt, M. Brust, A.I. Cooper, Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water. Langmuir 23, 885–895 (2007)CrossRefGoogle Scholar
  25. 25.
    L. Kong, R.H. Dong, H.M. Ma, J.C. Hao, Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 29, 4235–4241 (2013)CrossRefGoogle Scholar
  26. 26.
    G.H. Woehrle, M.G.W. And, J.E. Hutchison, Ligand exchange reactions yield subnanometer, thiol-stabilized gold particles with defined optical transitions. J. Phys. Chem. B 106, 9979–9981 (2002)CrossRefGoogle Scholar
  27. 27.
    J.A. Cecilia, A. Infantes-Molina, E. Rodriguez-Castellon, A. Jimenez-Lopez, Dibenzothiophene hydrodesulfurization over cobalt phosphide catalysts prepared through a new synthetic approach: effect of the support. Appl. Catal. B 92, 100–113 (2009)CrossRefGoogle Scholar
  28. 28.
    W.C. Du, S.X. Xia, R.F. Nie, Z.Y. Hou, Magnetic Pt catalyst for selective hydrogenation of halonitrobenzenes. Ind. Eng. Chem. Res. 53, 4589–4594 (2014)CrossRefGoogle Scholar
  29. 29.
    L. Miao, X. Qian, D. Zhu, T. Chen, G. Ping, Y. Lv, W. Xiong, Y. Liu, L. Gan, M. Liu, From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chin. Chem. Lett. 7, 1445–1449 (2019)CrossRefGoogle Scholar
  30. 30.
    F. Rodriguez, M. Jaroniec, B.L. Lopez, N.P. Wickramaratne, Aqueous synthesis of bimodal mesoporous carbons and carbon-silica mesostructures under basic conditions. Micropor. Mesopor. Mat. 226, 299–308 (2016)CrossRefGoogle Scholar
  31. 31.
    Y. Liang, D. Wu, R. Fu, Preparation and electrochemical performance of novel ordered mesoporous carbon with an interconnected channel structure. Langmuir 25, 7783–7785 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Zhuang, Y. Wan, C. Feng, Y. Shen, D. Zhao, Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem. Mater. 21, 706–716 (2009)CrossRefGoogle Scholar
  33. 33.
    H. Xu, X. Yin, M. Zhu, M. Han, Z. Hou, X. Li, L. Zhang, L. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces. 9, 6332–6341 (2017)CrossRefGoogle Scholar
  34. 34.
    C.C.M.C. Carcouet, M.W.P. van de Put, B. Mezari, P.C.M.M. Magusin, J. Laven, P.H.H. Bomans, H. Friedrich, A.C.C. Esteves, N.A.J.M. Sommerdijk, R.A.T.M. van Benthem, G. de With, Nucleation and growth of monodisperse silica nanoparticles. Nano Lett. 14, 1433–1438 (2014)CrossRefGoogle Scholar
  35. 35.
    Q. Wu, W. Li, J. Tan, S. Liu, Flexible cage-like carbon spheres with ordered mesoporous structures prepared via a soft-template/hydrothermal process from carboxymethylcellulose. RSC Adv. 4, 61518–61524 (2014)CrossRefGoogle Scholar
  36. 36.
    S. Wang, J. Wang, X. Zhu, J. Wang, O. Terasaki, Y. Wan, Size-control growth of thermally stable Au nanoparticles encapsulated within ordered mesoporous carbon framework. Chin. J. Catal. 37, 61–72 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, D. Zhao, A family of highly ordered mesoporous polymer resin and carbon structures from organic − organic self-assembly. Chem. Mater. 18, 4447–4464 (2006)CrossRefGoogle Scholar
  38. 38.
    Z.Y. Song, H. Duan, L.C. Li, D.Z. Zhu, T.C. Cao, Y.K. Lv, W. Xiong, Z.W. Wang, M.X. Liu, L.H. Gan, High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J. 372, 1216–1225 (2019)CrossRefGoogle Scholar
  39. 39.
    W. Xiong, L. Zhou, S. Liu, Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb(II) and Cu(II). Chem. Eng. J. 284, 650–656 (2016)CrossRefGoogle Scholar
  40. 40.
    M. Malisic, A. Janosevic, B.S. Paunkovic, I. Stojkovic, G. Ciric-Marjanovic, Exploration of MnO2/carbon composites and their application to simultaneous electroanalytical determination of Pb(II) and Cd(II). Electrochim. Acta 74, 158–164 (2012)CrossRefGoogle Scholar
  41. 41.
    M. Liu, Q. Guan, S.T. Liu, Nitrogen-doped hollow carbon spheres for electrochemical detection of heavy metal ions. Ionics 24, 2783–2793 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Yao, H. Wu, J.F. Ping, Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 274, 8–15 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and environmental engineeringWuhan Institute of TechnologyWuhanPeople’s Republic of China

Personalised recommendations