Advertisement

Effect of substrates and post-deposition annealing on rf-sputtered Al-doped ZnO (AZO) thin films

  • Nalin Prashant PoddarEmail author
  • S. K. Mukherjee
Article
  • 1 Downloads

Abstract

Al-doped zinc oxide (AZO) thin films were deposited on glass, quartz, and indium tin oxide (ITO) substrates using rf magnetron sputtering. The influence of the substrate material and post-deposition annealing (300–700 °C) in air on the structural, optical and electrical properties were studied. All as-deposited and annealed films were investigated using X-ray diffraction (XRD), grazing incidence XRD, field effect scanning electron microscope, Raman spectroscopy, UV–visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and four-point probe measurements. The AZO films were crystalline and preferentially oriented along the (002) diffraction plane. The average crystallite size decreased with annealing temperature and ranged from 19.6 to 30.3 nm. The AZO films were non-porous, dense, and continuous with columnar growth. The prominent Raman peaks showed anomalous doped ZnO modes. The deconvoluted Raman spectra showed the presence of A1 (LO) and A1 (TO) ZnO modes. FTIR revealed the Al–O and Zn–O stretching vibrations in the films. AZO films had high optical transmittance (61 to 78%) at visible wavelengths and an average band gap of 3.27 ± 0.04 eV, which is suitable for optoelectronics applications. The resistivity (4.5 × 10−4 to 9 × 10−4 Ω cm) and high figure of merit value indicates that AZO thin films may be suitable transparent conductive oxides.

Notes

Acknowledgements

The authors acknowledge the Central Instrumental Facility (CIF) of Birla Institute of Technology, Ranchi for their support in characterizations work. One of the authors (Nalin Prashant Poddar) thanks the Birla Institute of Technology, Ranchi for the Award of an Institute Fellowship.

References

  1. 1.
    T. Minami, T. Miyata, Thin Solid Films 517, 1474–1477 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Minami, MRS Bull. 25, 38–44 (2000)CrossRefGoogle Scholar
  3. 3.
    T. Minami, H. Nanto, S. Takata, Appl. Phys. Lett. 41, 958–960 (1982)CrossRefGoogle Scholar
  4. 4.
    H. Nanto, T. Minami, S. Shooji, S. Takata, J. Appl. Phys. 55, 1029–1034 (1984)CrossRefGoogle Scholar
  5. 5.
    N.P. Poddar, S. Mukherjee, J. Mater. Sci. Mater. Electron. 30, 537–548 (2019)CrossRefGoogle Scholar
  6. 6.
    T.M.K. Thandavan, S.M.A. Gani, C. San Wong, R.M. Nor, PLoS ONE 10, e0121756 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Nebatti, C. Pflitsch, B. Atakan, Thin Solid Films 636, 532–536 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Venkatachalam, Y. Iida, Y. Kanno, Superlattices Microstruct. 44, 127–135 (2008)CrossRefGoogle Scholar
  9. 9.
    Q. Hou, F. Meng, J. Sun, Nanoscale Res. Lett. 8, 144 (2013)CrossRefGoogle Scholar
  10. 10.
    D. Sahu, S.Y. Lin, J.L. Huang, Microelectron. J. 38, 245–250 (2007)CrossRefGoogle Scholar
  11. 11.
    A. Djelloul, M.S. Aida, J. Bougdira, J. Lumin. 130, 2113–2117 (2010)CrossRefGoogle Scholar
  12. 12.
    T. Miyata, Y. Minamino, S. Ida, T. Minami, J. Vac. Sci. Technol. A 22, 1711–1715 (2004)CrossRefGoogle Scholar
  13. 13.
    S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 499, 231–237 (2010)CrossRefGoogle Scholar
  14. 14.
    L. Cai, G. Jiang, C. Zhu, D. Wang, Phys. Status Solidi A 206, 1461–1464 (2009)CrossRefGoogle Scholar
  15. 15.
    N.R. Yogamalar, A.C. Bose, J. Alloys Compd. 509, 8493–8500 (2011)CrossRefGoogle Scholar
  16. 16.
    S.B. Majumder, M. Jain, P.S. Dobal, R.S. Katiyar, Mater. Sci. Eng. B 103, 16–25 (2003)CrossRefGoogle Scholar
  17. 17.
    D.S. Ginley, C. Bright, MRS Bull. 25, 15–18 (2000)CrossRefGoogle Scholar
  18. 18.
    S.E. Pust, J.P. Becker, J. Worbs, S.O. Klemm, K.J. Mayrhofer, J. Hüpkes, J. Electrochem. Soc. 158, D413–D419 (2011)CrossRefGoogle Scholar
  19. 19.
    N.E. Duygulu, A. Kodolbas, A. Ekerim, J. Cryst. Growth 394, 116–125 (2014)CrossRefGoogle Scholar
  20. 20.
    S.Y. Kuo, K.C. Liu, F.I. Lai, J.F. Yang, W.C. Chen, M.Y. Hsieh, H.I. Lin, W.T. Lin, Microelectron. Reliab. 50, 730–733 (2010)CrossRefGoogle Scholar
  21. 21.
    E.G. Fu, D.M. Zhuang, G. Zhang, W.F. Yang, M. Zhao, Appl. Surf. Sci. 217, 88–94 (2003)CrossRefGoogle Scholar
  22. 22.
    D.K. Kim, H.B. Kim, J. Alloys Compd. 522, 69–73 (2012)CrossRefGoogle Scholar
  23. 23.
    B.L. Zhu, S.J. Zhu, J. Wang, J. Wu, D.W. Zeng, C.S. Xie, Physica E 43, 1738–1745 (2011)CrossRefGoogle Scholar
  24. 24.
    W. Yang, Z. Liu, D.L. Peng, F. Zhang, H. Huang, Y. Xie, Z. Wu, Appl. Surf. Sci. 255, 5669–5673 (2009)CrossRefGoogle Scholar
  25. 25.
    Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, S. Hou, Superlattices Microstruct. 49, 644–653 (2011)CrossRefGoogle Scholar
  26. 26.
    S.H. Jeong, J.H. Boo, Thin Solid Films 447, 105–110 (2004)CrossRefGoogle Scholar
  27. 27.
    J.W. Leem, J.S. Yu, Thin Solid Films 518, 6285–6288 (2010)CrossRefGoogle Scholar
  28. 28.
    J. Lee, D. Lee, D. Lim, K. Yang, Thin Solid Films 515, 6094–6098 (2007)CrossRefGoogle Scholar
  29. 29.
    X. Wang, X. Zeng, D. Huang, X. Zhang, Q. Li, J. Mater. Sci. Mater. Electron. 23, 1580–1586 (2012)CrossRefGoogle Scholar
  30. 30.
    J.J. Ding, H.X. Chen, S.Y. Ma, Physica E 42, 1861–1864 (2010)CrossRefGoogle Scholar
  31. 31.
    C.H. Choi, S.H. Kim, J. Cryst. Growth 283, 170–179 (2005)CrossRefGoogle Scholar
  32. 32.
    W. Yang, Z. Wu, Z. Liu, A. Pang, Y.-L. Tu, Z.C. Feng, Thin Solid Films 519, 31–36 (2010)CrossRefGoogle Scholar
  33. 33.
    C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. Hirao, Thin Solid Films 517, 3265–3268 (2009)CrossRefGoogle Scholar
  34. 34.
    T.H. Chen, T.C. Cheng, Z.R. Hu, Microsyst. Technol. 19, 1787–1790 (2013)CrossRefGoogle Scholar
  35. 35.
    L. Dejam, S.M. Elahi, H.H. Nazari, H. Elahi, S. Solaymani, A. Ghaderi, J. Mater. Sci. Mater. Electron. 27, 685–696 (2016)CrossRefGoogle Scholar
  36. 36.
    H. Tong, Z. Deng, Z. Liu, C. Huang, J. Huang, H. Lan, C. Wang, Y. Cao, Appl. Surf. Sci. 257, 4906–4911 (2011)CrossRefGoogle Scholar
  37. 37.
    H.J. Cho, S.U. Lee, B. Hong, Y.D. Shin, J.Y. Ju, H.D. Kim, M. Park, W.S. Choi, Thin Solid Films 518, 2941–2944 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Kim, J.H. Yun, S.W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.H. Kim, W.A. Anderson, J.H. Lee, J. Yi, Mater. Lett. 65, 786–789 (2011)CrossRefGoogle Scholar
  39. 39.
    Y.C. Cheng, Appl. Surf. Sci. 258, 604–607 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.Y. Chen, P.W. Wang, J.C. Hsu, C.Y. Lee, Vacuum 87, 227–231 (2013)CrossRefGoogle Scholar
  41. 41.
    S.N. Bai, T.Y. Tseng, J. Mater. Sci. Mater. Electron. 20, 253–256 (2009)CrossRefGoogle Scholar
  42. 42.
    S.S. Lin, J.L. Huang, Surf. Coat. Technol. 185, 222–227 (2004)CrossRefGoogle Scholar
  43. 43.
    A. Van der Drift, Philips Res. Rep. 22, 267–269 (1967)Google Scholar
  44. 44.
    B.C. Mohanty, B.K. Kim, D.H. Yeon, Y.H. Jo, I.J. Choi, S.M. Lee, Y.S. Cho, J. Electrochem. Soc. 159, H96–H101 (2011)CrossRefGoogle Scholar
  45. 45.
    K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, Appl. Surf. Sci. 258, 1283–1289 (2011)CrossRefGoogle Scholar
  46. 46.
    S.Y. Pung, K.L. Choy, X. Hou, C. Shan, Nanotechnology 19, 435609 (2008)CrossRefGoogle Scholar
  47. 47.
    C.C. Ting, S.Y. Chen, D.M. Liu, Thin Solid Films 402, 290–295 (2002)CrossRefGoogle Scholar
  48. 48.
    M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, Thin Solid Films 515, 6562–6566 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Wójcik, M. Godlewski, E. Guziewicz, R. Minikayev, W. Paszkowicz, J. Cryst. Growth 310, 284–289 (2008)CrossRefGoogle Scholar
  50. 50.
    J.-H. Lee, J. Electroceram. 23, 512 (2009)CrossRefGoogle Scholar
  51. 51.
    A. Purohit, S. Chander, A. Sharma, S.P. Nehra, M.S. Dhaka, Opt. Mater. 49, 51–58 (2015)CrossRefGoogle Scholar
  52. 52.
    Y. Wang, X. Li, G. Jiang, W. Liu, C. Zhu, J. Mater. Sci. Mater. Electron. 24, 3764–3767 (2013)CrossRefGoogle Scholar
  53. 53.
    X. Li, Y. Wang, W. Liu, G. Jiang, C. Zhu, Mater. Lett. 85, 25–28 (2012)CrossRefGoogle Scholar
  54. 54.
    K.M. Chang, S.H. Huang, C.J. Wu, W.L. Lin, W.C. Chen, C.W. Chi, J.W. Lin, C.C. Chang, Thin Solid Films 519, 5114–5117 (2011)CrossRefGoogle Scholar
  55. 55.
    D.H. Lee, K. Kim, Y.S. Chun, S. Kim, S.Y. Lee, Curr. Appl. Phys. 12, 586–1590 (2012)Google Scholar
  56. 56.
    H. Yue, A. Wu, Y. Feng, X. Zhang, T. Li, Thin Solid Films 519, 5577–5581 (2011)CrossRefGoogle Scholar
  57. 57.
    D. Meljanac, K. Juraić, V. Mandić, H. Skenderović, S. Bernstorff, J.R. Plaisier, A. Śantić, A. Gajović, B. Śantić, D. Gracin, Surf. Coat. Technol. 321, 292–299 (2017)CrossRefGoogle Scholar
  58. 58.
    J. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)CrossRefGoogle Scholar
  59. 59.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doǵan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 11 (2005)CrossRefGoogle Scholar
  60. 60.
    P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuators A 164, 8–14 (2010)CrossRefGoogle Scholar
  61. 61.
    A. Srivastava, Praveen, M. Arora, S.K. Gupta, B.R. Chakraborty, S. Chandra, S. Toyoda, H. Bahadur, J. Mater. Sci. Technol. 26, 986–990 (2010)CrossRefGoogle Scholar
  62. 62.
    F. Meriche, T. Touam, A. Chelouche, M. Dehimi, J. Solard, A. Fischer, A. Boudrioua, L.H. Peng, Electron. Mater. Lett. 11, 862–870 (2015)CrossRefGoogle Scholar
  63. 63.
    R. Menon, V. Gupta, H.H. Tan, K. Sreenivas, C. Jagadish, J. Appl. Phys. 109, 064905 (2011)CrossRefGoogle Scholar
  64. 64.
    Y. Li, J. Wang, Y. Kong, J. Zhou, J. Wu, G. Wang, H. Bi, X. Wu, W. Qin, Q. Li, Sci. Rep. 6, 19187 (2016)CrossRefGoogle Scholar
  65. 65.
    A. Mallika, A.R. Reddy, K.S. Babu, K.V. Reddy, Ceram. Int. 40, 12171–12177 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of TechnologyRanchiIndia

Personalised recommendations