Advertisement

Tuning of photoluminescence intensity of europium doped sodium yttrium fluorides synthesized via hydrothermal route

  • Lobzang Tashi
  • Manesh Kumar
  • Rajinder Singh
  • Yugal Khajuria
  • Haq Nawaz SheikhEmail author
Article

Abstract

Hydrothermal synthesis of pure, europium doped sodium yttrium fluoride (NaYF4: Eu3+) and NaYF4: Eu3+@NaGdF4 core–shell nanostructures by using trisodium citrate as chelating agent is reported. The control of nanostructure morphology as function of heating time intervals under same reaction condition at 180 °C has been achieved. The synthesized nanostructures were characterized by powder X-ray diffraction (PXRD), Rietveld refinenement, field emission electron microscopy, transmission electron microscopy, infrared spectroscopy, and energy dispersive X-ray spectroscopy. PXRD analysis reveals that all synthesized nanostructures have hexagonal phase without any impurity. Thermogravimetric analysis suggests appreciable thermal stability of synthesized lanthanide doped fluorides and core–shell nanostructures. Photoluminescence spectra of the as synthesized nanocomposites were investigated in details which indicate that the emission intensities are modulated by the morphology of nanostructures which in turn is regulated by varying heating time intervals.

Notes

Acknowledgements

We would like to acknowledge Advanced Material Research Centre (AMRC), IIT Mandi for SEM and TEM analyses, SMVDU Katra for PL studies, Indian Institute of Technology Guwahati for fluorescence and Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University for their technical support.

Supplementary material

10854_2019_1795_MOESM1_ESM.docx (451 kb)
Supplementary material 1 (DOCX 448 kb)

References

  1. 1.
    A. Ansari, R. Yadav, S.B. Rai, RSC Adv. 6, 22074 (2016)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, J. Yang, B. Zhao, M.Y. Liu, Z.Zhang Han, Angew Chem. Int. Ed. 54, 11531 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Tong, X. Li, R. Hua, X. Li, H. Zheng, J. Sun, B. Chen, J. Lumin. 167, 386 (2015)CrossRefGoogle Scholar
  4. 4.
    Q. Wu, J. Pei, G. De, J. Lumin. 152, 192 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Wang, J. Jiang, S. Wan, J. Zhai, Electrochim. Acta 155, 357 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Yuan, L. Chen, J.A. Li, Z. Damasco, H. Xing, P.N. Prasad, ACS Appl. Mater. Interfaces 6, 18018 (2014)CrossRefGoogle Scholar
  7. 7.
    Q. Tian, K. Tao, Z. Zhang, K. Sun, Colloid Polym. Sci. 291, 2533 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Zhou, G. Chen, E. Wu, G. Bi, B. Wu, Y. Teng, J. Qiu, Nano Lett. 13, 2241 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Fischer, J.K. Swabeck, A.P. Alivisatos, J. Am. Chem. Soc. 139, 12325 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Zhao, S. He, M.C. Tan, J. Mater. Chem. C 4, 8349 (2016)CrossRefGoogle Scholar
  11. 11.
    R.K. Sharma, A.V. Mudring, P. Ghosh, J. Lumin. 189, 44 (2017)CrossRefGoogle Scholar
  12. 12.
    X.U. Zhan, G.U. Wenbin, F.E.N.G. He, Z. Zhang, Z.H.A.O. Jingtai, J. Rare Earth 35, 844 (2017)CrossRefGoogle Scholar
  13. 13.
    A. Bednarkiewicz, M. Nyk, M. Samoc, W. Strek, J. Phys. Chem. C 114, 17535 (2010)CrossRefGoogle Scholar
  14. 14.
    M.A.H. Rodriguez, U.R.R. Mendoza, V. Lavín, J.E.M. Santiuste, I.R. Martin, A.D.L. Gorrin, J. Lumin. 196, 20 (2018)CrossRefGoogle Scholar
  15. 15.
    H. Jiang, D. Zhou, D. Qu, G. Chu, W. Xu, H. Song, Y. Xu, RSC Adv. 6, 76231 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Zhu, Q. Su, W. Feng, F. Li, Chem. Soc. Rev. 46, 1025 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Fan, S. Wang, L. Yu, H. Sun, G. Gao, L. Hu, Opt. Express 25, 180 (2017)CrossRefGoogle Scholar
  18. 18.
    W.A.N.G. Junmei, L.I. Kexun, Z.H.A.O. Yanbao, Z.H.U. Zhenping, J. Rare Earth 33, 339 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Ding, S. Yin, Y. Ni, C. Lu, D. Chen, J. Zhong, Z. Xu, Ceram. Int. 41, 7411 (2015)CrossRefGoogle Scholar
  20. 20.
    W. Li, C. Tan, Y. Zhang, Opt. Commun. 295, 140 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Xie, Z. Gao, E. Zhou, X. Cheng, Y. Wang, X. Xie, W. Huang, Nanoscale 9, 15974 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Zhao, X. Wang, X. Sun, G. Jia, L. Huang, D. Deng, S. Xu, CrystEngComm 15, 7346 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Gautam, F.C. van Veggel, J. Mater. Chem. B 1, 5186 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Hudry, A.M.M. Abeykoon, E. Dooryhee, D. Nykypanchuk, J.H. Dickerson, Chem. Mater. 28, 8752 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Zhou, B. Xu, H. He, Z. Gu, B. Tang, Y. Ma, T. Zhai, Nanoscale 10, 2834 (2018)CrossRefGoogle Scholar
  26. 26.
    M. Ding, Y. Ni, Y. Song, X. Liu, T. Cui, D. Chen, Z. Xu, J Alloys Compd. 623, 42 (2015)CrossRefGoogle Scholar
  27. 27.
    W. Gui, S. Liu, J Alloys Compd. 708, 1 (2017)CrossRefGoogle Scholar
  28. 28.
    E. Lu, J. Pichaandi, L.P. Arnett, L. Tong, M.A. Winnik, J. Phys. Chem. C 121, 18178 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Zhang, L. Huang, X. Liu, Angew Chem. Int. Ed. 55, 5718 (2016)CrossRefGoogle Scholar
  30. 30.
    W. Liu, Q. Sun, M. Yan, Y. Song, X. Zhou, Y. Sheng, H. Zou, CrystEngComm. 20, 6173 (2018)CrossRefGoogle Scholar
  31. 31.
    B. Herden, J. Nordmann, R. Komban, M. Haase, T. Jüstel, Opt. Mater. 35, 2062 (2013)CrossRefGoogle Scholar
  32. 32.
    W. Bian, T. Wang, Y. Guo, X. Yu, X. Xu, J. Qiu, CrystEngComm 17, 7332 (2015)CrossRefGoogle Scholar
  33. 33.
    S.M. ul Hassan, Y. Kitamoto, Mater. Chem. Phys. 167, 49 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Ding, J. Hou, Z. Cui, H. Gao, C. Lu, J. Xi, D. Chen, Ceram. Int. 44, 7930 (2018)CrossRefGoogle Scholar
  35. 35.
    D. Yue, Q. Li, W. Lu, Q. Wang, M. Wang, C. Li, J. Hao, J. Mater. Chem. C 3, 2865 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Ladol, H. Khajuria, M. Kumar, H.N. Sheikh, Nanochem. Res. 2, 188 (2017)Google Scholar
  37. 37.
    H. Dong, L.D. Sun, L.D. Li, R. Si, R. Liu, C.H. Yan, J. Am. Chem. Soc. 139, 18492 (2017)CrossRefGoogle Scholar
  38. 38.
    Q. Shao, H. Zhang, J. Dai, C. Yang, X. Chen, G. Feng, S. Zhou, CrystEngComm. 21, 741 (2019)CrossRefGoogle Scholar
  39. 39.
    J. Ladol, H. Khajuria, S. Khajuria, H.N. Sheikh, Bull. Mater. Sci. 39, 943 (2016)CrossRefGoogle Scholar
  40. 40.
    A.A. Alqadami, M. Naushad, M.A. Abdalla, T. Ahamad, Z.A. Alothman, S.M. Alshehri, RSC Adv. 6, 22679 (2016)CrossRefGoogle Scholar
  41. 41.
    A.H. Li, Z.J. Sun, Q. Lü, J. Nanoparticle Res. 15, 1377 (2013).  https://doi.org/10.1007/s11051-012-1377-4 CrossRefGoogle Scholar
  42. 42.
    J. Zhu, S. Wei, N. Haldolaarachchige, D.P. Young, Z. Guo, J. Phys. Chem C 115, 15304 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Cui, B. Chen, G. Qian, Coord. Chem. Rev. 273, 76 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Ding, C. Lu, L. Cao, J. Song, Y. Ni, Z. Xu, J. Mater. Sci. 48, 4989 (2013)CrossRefGoogle Scholar
  45. 45.
    T. Samanta, C. Hazra, A.E. Praveen, S. Ganguli, V. Mahalingam, Eur. J. Inorg. Chem. 6, 802 (2016)CrossRefGoogle Scholar
  46. 46.
    R. Chatterjee, S. Saha, D. Sen, K. Panigrahi, U.K. Ghorai, G.C. Das, K.K. Chattopadhyay, ACS Omega 3, 788 (2018)CrossRefGoogle Scholar
  47. 47.
    V.R. Reshmi, P.P. Rao, A.K. Raj, T.S. Sreena, J. Lumin. 190, 6 (2017)CrossRefGoogle Scholar
  48. 48.
    T. Selvalakshmi, A.C. Bose, S. Velmathi, J. Nanosci. Nanotechnol. 15, 5760 (2015)CrossRefGoogle Scholar
  49. 49.
    L. Xu, J. Shen, C. Lu, Y. Chen, W. Hou, Cryst. Growth Des. 9, 3129 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of JammuJammu TawiIndia
  2. 2.School of PhysicsShri Mata Vaishno Devi UniversityKatraIndia

Personalised recommendations