Microwave hydrothermal synthesis, annealing and luminescence properties of BaWO4:3%Eu3+ microcrystals

  • Jun Xie
  • Yiling Zhu
  • Yunhui Qi
  • Rui Zhu
  • Qiuliang Wang
  • Yunfei LiuEmail author
  • Yinong LyuEmail author


The uniform BaWO4 microcrystals with scheelite-type tetragonal structure were fabricated via a microwave hydrothermal method. The morphologies and sizes of the products can be tuned by adjusting synthetic conditions including pH value, the amount of cetyltrimethylammonium bromide (CTAB) and the reaction time. The increasing amount of CTAB surfactant (from 0 to 0.05 mmol) causes the morphological transformation from flower-like to octahedron-like. Particularly, in the time-dependent experiments, the nanoparticles prefer to adsorb or nucleate on (111) crystal planes in the growth process, while the (101) planes become narrow or even partly disappear. Doping of Eu3+ (3 mol%) has no effect on the morphology and the phase structure. The emission spectrum (λex = 394 nm) of the BaWO4:3%Eu3+ exhibits the maximum peak at 613 nm, corresponding to 5D0 → 7F2 transition of Eu3+. Moreover, uniform and well-defined octahedron-like crystals have better fluorescence properties than irregular flower-like crystals. Annealing treatment, aiming at removing the residual surfactant on the surface, can effectively improve the crystallization and reduce the defects in the crystals. BaWO4:3%Eu3+ microcrystals with octahedron-like annealed at 850 °C for 2 h has the strongest luminescence properties, which can be considered as a red phosphor for white light-emitting diodes (WLEDs).



This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.


  1. 1.
    C. Anil Kumar, D. Pamu, Ceram. Int. 41, S296–S302 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Pandeya, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sens. Actuator B 209, 352–358 (2015)CrossRefGoogle Scholar
  3. 3.
    M.C. Oliveira, J. Andrés, L. Gracia, M.S.M.P. de Oliveira, J.M.R. Mercury, E. Longo, I.C. Nogueira, Sens. Actuator B 463, 907–917 (2019)Google Scholar
  4. 4.
    A. Sahmi, S. Omeiri, K. Bensadok, M. Trari, Mater. Sci. Semicond. Process. 91, 108–114 (2019)CrossRefGoogle Scholar
  5. 5.
    H.P. Barbosa, I.G.N. Silva, M. Felinto, E.E.S. Teotonio, O.L. Malta, H.F. Brito, J. Alloys Compd. 696, 820–827 (2017)CrossRefGoogle Scholar
  6. 6.
    R. Talebi, J. Mater. Sci.: Mater. Electron. 28, 6782–6787 (2017)Google Scholar
  7. 7.
    J. Zhou, Z.G. Xia, M.X. Yang, K. Shen, J. Mater. Chem. 22, 21935–21941 (2012)CrossRefGoogle Scholar
  8. 8.
    S.K. Hussain, J.S. Yu, J. Lumin. 183, 39–47 (2017)CrossRefGoogle Scholar
  9. 9.
    P. Du, L.K. Bharat, J.S. Yu, J. Lumin. 633, 37–41 (2015)Google Scholar
  10. 10.
    F.W. Kang, Y.H. Hu, L. Chen, X.J. Wang, H.Y. Wu, Z.F. Mu, J. Lumin. 135, 113–119 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Liu, S. Zhang, M.E. Bowden, J. Chaudhuri, J.J. De Yoreo, Cryst. Growth Des. 18, 1367–1375 (2018)CrossRefGoogle Scholar
  12. 12.
    H. Wu, J. Yang, X. Wang, S. Gan, L. Li, Solid State Sci. 79, 85–92 (2018)CrossRefGoogle Scholar
  13. 13.
    X.Y. Huang, B. Li, H. Guo, Ceram. Int. 43, 10566–10571 (2017)CrossRefGoogle Scholar
  14. 14.
    Z.X. Shi, J. Wang, X. Guan, J. Rare Earths 36, 911–916 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Zhang, A. Abraha, R. Zhang, T. Shahbazyan, M. Fadavi, E. Heydari, Q. Dai, Opt. Mater. 84, 115–122 (2018)CrossRefGoogle Scholar
  16. 16.
    Y.G. Su, L.P. Li, G.S. Li, Chem. Mater. 20, 6060–6067 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Bouzidi, M. Ferhi, H. Elhouichet, M. Ferid, J. Lumin. 161, 448–455 (2015)CrossRefGoogle Scholar
  18. 18.
    P. Jena, S.K. Gupta, N.K. Verma, A.K. Singh, R.M. Kadam, New J. Chem. 41, 8947–8958 (2017)CrossRefGoogle Scholar
  19. 19.
    Y. Shi, J. Shi, C. Dong, Opt. Mater. 84, 396–403 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Compos. B 167, 690–699 (2019)CrossRefGoogle Scholar
  21. 21.
    P. Afanasiev, Mater. Lett. 61, 4622–4626 (2007)CrossRefGoogle Scholar
  22. 22.
    K. Kawashima, J.-H. Kim, I. Cheng, K. Yubuta, K. Shin, Y. Liu, J. Lin, G. Henkelman, C.B. Mullins, Cryst. Growth Des. 18, 5301–5310 (2018)CrossRefGoogle Scholar
  23. 23.
    X.N. Chai, J. Li, Y. Zhang, X.S. Wang, Y.X. Li, X. Yao, RSC Adv. 6, 64072–64078 (2016)CrossRefGoogle Scholar
  24. 24.
    P.F.S. Pereira, I.C. Nogueira, E. Longo, E.J. Nassar, I.L.V. Rosa, L.S. Cavalcante, J. Rare Earths 33, 13–128 (2015)CrossRefGoogle Scholar
  25. 25.
    Z. Lou, J. Hao, M. Cocivera, J. Lumin. 99, 349–354 (2002)CrossRefGoogle Scholar
  26. 26.
    L.S. Cavalcante, J.C. Sczancoski, L.F. Lima, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Cryst. Growth Des. 9, 1002–1012 (2009)CrossRefGoogle Scholar
  27. 27.
    V.M. Longo, L. Ecio, S. Cavalcante, E.C. Paris, J. Ulio, C. Sczancoski, P.S. Pizani, M. Siu, J. Andr, E. Longo, J. Phys. Chem. C 115, 5207–5219 (2011)CrossRefGoogle Scholar
  28. 28.
    X. Xue, H. Yan, Y. Fu, Solid State Ion. 335, 1–6 (2019)CrossRefGoogle Scholar
  29. 29.
    Y.Q. Zhai, W. Zhang, Y.J. Yin, Y. Han, X. Zhao, H.H. Ding, N. Li, Ceram. Int. 43, 841–846 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Zhai, Q. Sun, S. Yang, Y. Liu, J. Wang, S. Ren, S. Ding, J. Alloys Compd. 781, 415–424 (2019)CrossRefGoogle Scholar
  31. 31.
    L. Xu, X. Yang, Z. Zhai, X. Chao, Z. Zhang, W. Hou, CrystEngComm 13, 4921–4929 (2011)CrossRefGoogle Scholar
  32. 32.
    G. Qiang, Q. Xuefeng, C. Hongliang, D. Weimin, M. Xiaodong, M. Maosong, J. Phys. Chem. B 110, 19295 (2006)CrossRefGoogle Scholar
  33. 33.
    Y.F. Liu, L.L. Xia, Y.N. Lu, S.H. Dai, M. Takeguchi, H.M. Hong, Z.G. Pan, J. Colloid Interface Sci. 381, 24–29 (2012)CrossRefGoogle Scholar
  34. 34.
    J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330, 227–236 (2009)CrossRefGoogle Scholar
  35. 35.
    J.C. Sczancoski, M.D.R. Bomio, L.S. Cavalcante, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, M.S. Li, J. Andres, J. Phys. Chem. C 113, 5812–5822 (2009)CrossRefGoogle Scholar
  36. 36.
    Y.F. Liu, L.L. Xia, Y.N. Lu, S.H. Dai, M. Takeguchi, H.M. Hong, Z.G. Pan, J. Colloid Interface Sci. 381, 24–29 (2012)CrossRefGoogle Scholar
  37. 37.
    M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.D. Gurgel, J.M.R. Mercury, E. Longo, J. Andres, Ceram. Int. 42, 10913–10921 (2016)CrossRefGoogle Scholar
  38. 38.
    J. Lin, J. Lin, Y.F. Zhu, Inorg. Chem. 46, 8372–8378 (2007)CrossRefGoogle Scholar
  39. 39.
    M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1089–1097 (2015)CrossRefGoogle Scholar
  40. 40.
    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Mater. Sci. Eng., R 89, 25–32 (2018)CrossRefGoogle Scholar
  41. 41.
    Y.P. Wang, Y. Qu, K. Pan, G.F. Wang, Y.D. Li, Chem. Commun. 52, 11124–11126 (2016)CrossRefGoogle Scholar
  42. 42.
    B.P. Maheshwary, R.A. Singh, New J. Chem. 39, 4494–4507 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  2. 2.Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)NanjingChina
  3. 3.Collaborative Innovation Center of Jiangsu Advanced Biological and Chemical Manufacturing (SICAM)NanjingChina

Personalised recommendations