The impacts of processing conditions and molecular structures on the performance of diketopyrrolopyrrole-based solution processed organic solar cells

  • Xiaobo Wang
  • Chao Ning
  • Zhenhua Liu
  • Haodong Qian
  • Gang Hu
  • Jiali Deng
  • Gang Wang
  • Yuandao Chen
  • Bo LiuEmail author


Furan and thiophene-substituted acceptor–donor–acceptor type soluble small molecules (SM1 and SM2) with absorption extending to 800 nm were synthesized and evaluated in solar cells combining with [6,6]-phenyl-C-61-butyric acid methyl ester (PC61BM). The organic solar cells (OSCs) were optimized with different processing conditions, such as thermal annealing. The performances of the OSCs were more than double enhanced by thermal annealing. The highest power conversion efficiency of 5.5% was achieved in OSCs based on SM2:PC61BM in a weight ratio of 1:1 annealed at 120 °C. In addition, the correlations between molecular structures and opto-electric properties as well as the performance of OSCs were also investigated, which indicates that replacing oxygen O with sulfur S on a main chain has much stronger influence on molecular property. These results will be very useful for further designing new molecules with even better property for OSCs.



The work was supported by the National Natural Science Foundation of China (21604022, 21502051, 51703062), The Natural Science Foundation of Hunan Provincial (2016JJ3097, 2018JJ3370), Scientific Research Fund of Hunan Provincial Education Department (15B159), Huxiang Youth Talent Support Program (2018RS3147).

Supplementary material

10854_2019_1785_MOESM1_ESM.docx (264 kb)
Supplementary material 1 (DOCX 264 kb)


  1. 1.
    J.E. Coughlin, Z.B. Henson, G.C. Welch, G.C. Bazan, Acc. Chem. Res. 47, 257 (2014)CrossRefGoogle Scholar
  2. 2.
    Y.S. Chen, X.J. Wan, G.K. Long, Acc. Chem. Res. 46, 2645 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Zhang, D. Deng, C. He, Y. He, M. Zhang, Z. Zhang, Y. Li, Chem. Mater. 23, 817 (2011)CrossRefGoogle Scholar
  4. 4.
    O.P. Lee, A.T. Yiu, P.M. Beaujuge, C.H. Woo, T.W. Holcombe, J.E. Millstone, J.D. Douglas, M.S. Chen, J.M.J. Fréchet, Adv. Mater. 23, 5359 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Burckstmmer, E.V. Tulyakova, M. Deppisch, M.R. Lenze, N.M. Kronenberg, M. Gsanger, M. Stolte, K. Meerholz, F. Wurthner, Angew. Chem. Int. Ed. 50, 11628 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Liu, X. Wan, F. Wang, J. Zhou, G. Long, J. Tian, Y. Chen, Adv. Mater. 23, 5387 (2011)CrossRefGoogle Scholar
  7. 7.
    Q. Shi, P. Cheng, Y. Li, X. Zhan, Adv. Energy Mater. 2, 63 (2011)CrossRefGoogle Scholar
  8. 8.
    R. Fitzner, C. Elschner, M. Weil, C. Uhrich, C. Körner, M. Riede, K. Leo, M. Pfeiffer, E. Reinold, E. Mena-Osteritz, P. Bäuerle, Adv. Mater. 24, 675 (2012)CrossRefGoogle Scholar
  9. 9.
    Q. Hou, Y. Chen, H. Zhen, Z. Ma, W. Hong, G. Shi, F. Zhang, J. Mater. Chem. A 1, 4937 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Ripaud, T. Rousseau, P. Leriche, J. Roncali, Adv. Energy Mater. 1, 540 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Loser, C.J. Bruns, H. Miyauchi, R.P. Ortiz, A. Facchetti, S.I. Stupp, T.J. Marks, J. Am. Chem. Soc. 133, 8142 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Ma, Y. Fu, D. Ni, J. Mao, Z. Xie, G. Tu, Chem. Commun. 48, 11847 (2012)CrossRefGoogle Scholar
  13. 13.
    Z. Li, G. He, X. Wan, Y. Liu, J. Zhou, G. Long, Y. Zuo, M. Zhang, Y. Chen, Adv. Energy Mater. 2, 74 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Cui, J. Min, C. Ho, T. Ameri, P. Yang, J. Zhao, C. Brabec, W. Wong, Chem. Commun. 49, 4409 (2013)CrossRefGoogle Scholar
  15. 15.
    J. Huang, C. Zhan, X. Zhang, Y. Zhao, Z. Lu, H. Jia, B. Jiang, J. Ye, S. Zhang, A. Tang, Y. Liu, Q. Pei, J. Yao, ACS Appl. Mater. Interfaces 6, 3853 (2014)CrossRefGoogle Scholar
  16. 16.
    D.H. Wang, A. Kyaw, V. Gupta, G.C. Bazan, A.J. Heeger, Adv. Energy Mater. 3, 1161 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Loser, H. Miyauchi, J.W. Hennek, J. Smith, C. Huang, A. Facchetti, T.J. Marks, Chem. Commun. 48, 8511 (2012)CrossRefGoogle Scholar
  18. 18.
    A. Garcia, G.C. Welch, E.L. Ratcliff, D.S. Ginley, G.C. Bazan, D.C. Olson, Adv. Mater. 24, 5368 (2012)CrossRefGoogle Scholar
  19. 19.
    T.S. Poll, J.A. Love, T.Q. Nguyen, G.C. Bazan, Adv. Mater. 24, 3646 (2012)CrossRefGoogle Scholar
  20. 20.
    J.A. Love, C.M. Proctor, J. Liu, C.J. Takacs, A. Sharenko, T.S. Poll, A.J. Heeger, G.C. Bazan, T.Q. Nguyen, Adv. Funct. Mater. 23, 5019 (2013)CrossRefGoogle Scholar
  21. 21.
    O. Wallquist, R. Lenz, Macromol. Symp. 187, 617 (2002)CrossRefGoogle Scholar
  22. 22.
    A.B. Tamayo, M. Tantiwiwat, B. Walker, T.Q. Nguyen, J. Phys. Chem. C 112, 15543 (2008)CrossRefGoogle Scholar
  23. 23.
    Y. Zou, D. Gendron, R. Neagu-Plesu, M. Leclerc, Macromolecules 42, 6361 (2009)CrossRefGoogle Scholar
  24. 24.
    H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, Y. Liu, Adv. Mater. 24, 4618 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Lin, L. Ma, Y. Li, Y. Liu, D. Zhu, X. Zhan, Adv. Energy Mater. 3, 1166 (2013)CrossRefGoogle Scholar
  26. 26.
    J. Hou, M. Park, S. Zhang, Y. Yao, L. Chen, J. Li, Y. Yang, Macromolecules 41, 6012 (2008)CrossRefGoogle Scholar
  27. 27.
    J. Zhou, Y. Zuo, X. Wan, G. Long, Q. Zhang, W. Ni, Y. Liu, Z. Li, G. He, C. Li, B. Kan, M. Li, Y. Chen, J. Am. Chem. Soc. 135, 8484 (2013)CrossRefGoogle Scholar
  28. 28.
    B. Liu, X. Chen, Y. Zou, L. Xiao, X. Xu, Y. He, L. Li, Y. Li, Macromolecules 45, 6898 (2012)CrossRefGoogle Scholar
  29. 29.
    L.J. Huo, J.H. Hou, Polym. Chem. 2, 2453 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Liu, X. Chen, Y. Zou, Y. He, L. Xiao, X. Xu, L. Li, Y. Li, Polym. Chem. 4, 470 (2013)CrossRefGoogle Scholar
  31. 31.
    B. Liu, B. Qiu, X. Chen, L. Xiao, Y. Li, Y. He, L. Jiang, Y. Zou, Polym. Chem. 5, 5002 (2014)CrossRefGoogle Scholar
  32. 32.
    Y. Aeschi, H. Li, Z. Cao, S. Chen, A. Amacher, N. Bieri, B. Ozen, J. Hauser, S. Decurtins, S. Tan, S. Liu, Org. Lett. 15, 5589 (2013)CrossRefGoogle Scholar
  33. 33.
    W. Li, M. Kelchtermans, M.M. Wienk, R.A.J. Janssen, J. Mater. Chem. A 1, 15150 (2013)CrossRefGoogle Scholar
  34. 34.
    B. Walker, A.B. Tamayo, X. Dang, P. Zalar, J. Seo, A. Garcia, M. Tantiwiwat, T.Q. Nguyen, Adv. Funct. Mater. 19, 3063 (2009)CrossRefGoogle Scholar
  35. 35.
    E. Wang, Z. Ma, Z. Zhang, K. Vandewal, P. Henriksson, O. Ingan, F. Zhang, M.R. Andersson, J. Am. Chem. Soc. 133, 14244 (2011)CrossRefGoogle Scholar
  36. 36.
    F. Gao, J.P. Wang, J.C. Blakesley, I. Hwang, Z. Li, N.C. Greenham, Adv. Energy Mater. 8, 956 (2012)CrossRefGoogle Scholar
  37. 37.
    C. Goh, R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.M.J. Frechet, Appl. Phys. Lett. 86, 122110 (2005)CrossRefGoogle Scholar
  38. 38.
    L. Huo, T.L. Chen, Y. Zhou, J. Hou, H.Y. Chen, Y. Yang, Y. Li, Macromolecules 42, 4377 (2009)CrossRefGoogle Scholar
  39. 39.
    Z. Ma, W. Sun, S. Himmelberger, K. Vandewal, Z. Tang, J. Bergqvist, A. Salleo, J. Andreasen, O. Inganas, M.R. Andersson, C. Muller, F. Zhang, E. Wang, Energy Environ. Sci. 7, 361 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaobo Wang
    • 1
    • 2
  • Chao Ning
    • 1
  • Zhenhua Liu
    • 1
  • Haodong Qian
    • 1
  • Gang Hu
    • 1
  • Jiali Deng
    • 1
  • Gang Wang
    • 1
    • 2
  • Yuandao Chen
    • 1
    • 2
  • Bo Liu
    • 1
    Email author
  1. 1.College of Chemistry and Materials EngineeringHunan University of Arts and ScienceChangdePeople’s Republic of China
  2. 2.Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic ZoneHunan University of Arts and ScienceChangdePeople’s Republic of China

Personalised recommendations