Advertisement

Performance improvement of inverted polymer solar cells using quantum dots and nanorod array

  • Ching-Ting LeeEmail author
  • Hsin-Ying Lee
  • Hsuch-Chih Hsu
Article
  • 14 Downloads

Abstract

Due to the high absorption at short wavelength and the color conversion effect, CdSe/ZnS core–shell quantum dots were blended into poly (3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as an active layer of invert polymer solar cells (IPSCs). Compared with the IPSCs using P3HT:PCBM active layer, the short-circuit current density was improved from 10.38 to 11.57 mA/cm2 and the power conversion efficiency was improved from 3.37 to 3.73% for the IPSCs using P3HT:PCBM:CdSe/ZnS active layer. Since the carrier mobility of organic materials is very small, the carrier collection ability is limited by the short carrier transport length before they are recombined. Therefore, the power conversion efficiency of the resulting organic solar cells is unavoidably restricted by the low carrier collection ability. In this work, to improve carrier collection ability, indium tin oxide (ITO) nanorod array was embedded. Compared with the short-circuit current density of 11.57 mA/cm2 and the power conversion efficiency of 3.73% of the IPSCs using P3HT:PCBM:CdSe/ZnS active layer, the short-circuit current density of 15.60 mA/cm2 and the power conversion efficiency of 4.86% were obtained for the IPSCs by embedding 1.0 μm periodic ITO nanorod array in the P3HT:PCBM:CdSe/ZnS active layer.

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology of the Republic of China under Contract Nos. MOST 105-2221-E-006-171-MY3 and MOST 106-2923-E-155-001-MY2.

References

  1. 1.
    K.W.J. Barnham, M. Mazzer, B. Clive, Nat. Mater. 5, 161 (2006)CrossRefGoogle Scholar
  2. 2.
    J. Schmidt, R. Peibst, R. Brendel, Sol. Energy Mater. Sol. Cells 187, 39 (2018)CrossRefGoogle Scholar
  3. 3.
    V. Titova, J. Schmidt, AIP Adv. 8, 125023 (2018)CrossRefGoogle Scholar
  4. 4.
    J.W. Boucher, A.L. Greenaway, K.E. Egelhofer, S.W. Boettcher, Sol. Energy Mater. Sol. Cells 159, 546 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Pouladi, M. Rathi, D. Khatiwada, M. Asadirad, S.K. Oh, P. Dutta, Y. Yao, Y. Gao, S. Sun, Y. Li, S. Shervin, K.H. Lee, V. Selvamanickam, J.H. Ryou, Prog. Photovolt. Res. Appl. 27, 30 (2019)CrossRefGoogle Scholar
  6. 6.
    C.T. Lee, C.H. Lee, Org. Electron. 14, 2046 (2013)CrossRefGoogle Scholar
  7. 7.
    G.S. Chen, Y.C. Chen, C.T. Lee, H.Y. Lee, Sol. Energy 174, 897 (2018)CrossRefGoogle Scholar
  8. 8.
    E.L. Lim, C.C. Yap, M.H.H. Jumali, F.L. Khairulaman, J. Mater. Sci. 30, 2726 (2019)Google Scholar
  9. 9.
    T. Soga, S. Kato, S. Kato, N. Kishi, J. Mater. Sci. 30, 3332 (2019)Google Scholar
  10. 10.
    J.Y. Oh, M. Shin, H.W. Lee, Y.J. Lee, H.K. Baik, U. Jeong, ACS Appl. Mater. Interfaces 6, 7759 (2014)CrossRefGoogle Scholar
  11. 11.
    X.W. Guo, Y.X. Zhang, X.J. Liu, S. Braun, Z.Q. Wang, B. Li, Y.Q. Li, C.G. Duan, M. Fahlman, J.X. Tang, J.F. Fang, Q.Y. Bao, Org. Electron. 59, 15 (2018)CrossRefGoogle Scholar
  12. 12.
    M. Elshobaki, J. Anderegg, S. Chaudhary, ACS Appl. Mater. Interfaces 6, 12196 (2014)CrossRefGoogle Scholar
  13. 13.
    H.L. Huang, C.T. Lee, H.Y. Lee, Org. Electron. 21, 126 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Li, C.W. Chu, V. Shrotriya, J. Huang, Y. Yang, Appl. Phys. Lett. 88, 253503 (2006)CrossRefGoogle Scholar
  15. 15.
    S.H. Wang, Y.J. Hsiao, T.H. Fang, M.H. Lin, S.H. Kanga, ECS J. Solid State Sci. Technol. 2, M52 (2013)CrossRefGoogle Scholar
  16. 16.
    X.M. He, F. Gao, G.L. Tu, D. Hasko, S. Hüttner, U. Steiner, N.C. Greenham, R.H. Friend, W.T.S. Huck, Nano Lett. 10, 1302 (2010)CrossRefGoogle Scholar
  17. 17.
    C.T. Lee, H.Y. Juo, IEEE J. Electron Devices Soc. 6, 183 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringYuan Ze UniversityTaoyuanTaiwan, ROC
  2. 2.Department of PhotonicsNational Cheng Kung UniversityTainanTaiwan, ROC
  3. 3.Institute of Microelectronics, Department of Electrical EngineeringNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations