Advertisement

Anatase TiO2 nanowires with nanoscale whiskers for the improved photovoltaic performance in dye-sensitized solar cells

  • Zhaobin Zhang
  • Wanxian Cai
  • Yanqi Lv
  • Yuanzeng Jin
  • Koucheng Chen
  • Ling Wang
  • Xingfu ZhouEmail author
Article
  • 33 Downloads

Abstract

TiO2 as an efficient electron transfer material has been widely utilized in dye-sensitized solar cells (DSSCs), and the morphology of TiO2 plays a decisive role in the performance of DSSCs. However, one-dimensional TiO2 nanowires, which are generally used as the efficient electron transport layers, have small specific surface area and low dye loading. Here, we introduce an effective and reproducible one-step hydrothermal method to prepare TiO2 nanowire with nanoscale whiskers. The synthetic sample was characterized by the field emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction. TiO2 nanowire with nanoscale whiskers has a high light scattering performance and high dye loading capacity. This novel TiO2 nanowire show a power conversion efficiency (PCE) of 4.12%, which is close to the benchmark of P25 nanoparticle usually used in DSSC fabrication. The PCE of DSSC-3 using TiO2 nanowire with nanoscale whiskers and commercial P25 double-layer photoanode has a PCE of 5.98%, showing an increase of 11.98% when compared with DSSC-2 based on pure P25 photoanode.

Notes

Acknowledgements

We acknowledge financial support from the Natural Science Foundation of China (No. 21676146), the Financial Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering and A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    B. O’regan, M. Grätzel, Nature 353, 737–740 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Grätzel, J. Photochem. Photobiol., A 164, 3–14 (2004)CrossRefGoogle Scholar
  3. 3.
    A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Science 285, 692–698 (1999)CrossRefGoogle Scholar
  4. 4.
    M. Grätzel, J. Photochem. Photobiol. 4, 145–153 (2003)CrossRefGoogle Scholar
  5. 5.
    J.G. Wang, T.D. Chen, J. Power Sources 267, 136–139 (2014)CrossRefGoogle Scholar
  6. 6.
    F. Svauage, J.D. Decoppet, M. Zhang, S.M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang, M. Gratzel, J. Am. Chem. Soc. 133, 9304–9310 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Rezvani, E. Parvazian, S.A. Hosseini, Bull. Mater. Sci. 39, 1397–1402 (2016)CrossRefGoogle Scholar
  8. 8.
    E. Ramasamy, J. Lee, Chem. Commun. 46, 2136–2138 (2010)CrossRefGoogle Scholar
  9. 9.
    M.A.M. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum, K. Sopian, Renew. Sust. Energy Rev. 65, 183–213 (2016)CrossRefGoogle Scholar
  10. 10.
    Z.G. Chen, H. Yang, X.H. Li, F.Y. Li, T. Yi, C.H. Huang, J. Mater. Chem. 17, 1602–1607 (2007)CrossRefGoogle Scholar
  11. 11.
    A.C. Santulli, C. Koenigsmann, A.L. Tiano, D. Derosa, S.S. Wong, Nanotechnology 22, 245402 (2011)CrossRefGoogle Scholar
  12. 12.
    J.Y. Liao, J.W. He, H. Xu, D.B. Kuang, C.Y. Su, J. Mater. Chem. 22, 7910–7918 (2012)CrossRefGoogle Scholar
  13. 13.
    N.G. Park, J.V.D. Lagemaat, A.J. Frank, J. Phys. Chem. B 104, 8989–8994 (2000)CrossRefGoogle Scholar
  14. 14.
    R. Cherrington, D.J. Hughes, S. Senthilarasu, V. Goodship, Energy Technol. 3, 866–870 (2015)CrossRefGoogle Scholar
  15. 15.
    N. Tasić, Z.M. Stanojević, Z. Branković, U. Lačnjevac, V. Ribić, M. Žunić, T. Novaković, M. Podlogar, G. Branković, Electrochim. Acta 210, 606–614 (2016)CrossRefGoogle Scholar
  16. 16.
    F.I.M. Fazli, M.K. Ahmad, C.F. Soon, N. Nafarizal, A.B. Suriani, A. Mohamed, M.H. Mamat, M.F. Malek, M. Shimomura, K. Murakami, Optik 140, 1063–1068 (2017)CrossRefGoogle Scholar
  17. 17.
    A.S. Shikoh, Z. Ahmad, F. Touati, R.A. Shakoor, S.A. Al-Muhtaseb, Ceram. Int. 43, 10540–10545 (2017)CrossRefGoogle Scholar
  18. 18.
    B.X. Lei, P. Zhang, M.L. Xie, Y. Li, S.N. Wang, Y.Y. Yu, W. Sun, Z.F. Sun, Electrochim. Acta 173, 497–505 (2015)CrossRefGoogle Scholar
  19. 19.
    X.Y. Liu, J. Fang, Y. Liu, T. Lin, Front. Mater. Sci. 10, 225–237 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Zhao, C. Zhong, Y. Wang, S. Wang, B. Dong, L. Wan, J. Power Sources 292, 49–57 (2015)CrossRefGoogle Scholar
  21. 21.
    Y. Akila, N. Muthukumarasamy, S. Agilan, T.K. Mallick, S. Senthilarasu, D. Velauthapillai, Opt. Mater. 58, 76–83 (2016)CrossRefGoogle Scholar
  22. 22.
    J.Y. Liao, B.X. Lei, D.B. Kuang, C.Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)CrossRefGoogle Scholar
  23. 23.
    Z.J. Cui, K.Y. Zhang, G.Y. Xing, Y.Q. Feng, S.X. Meng, Front. Chem. Sci. Eng. 11, 395–404 (2017)CrossRefGoogle Scholar
  24. 24.
    Y.F. Zhu, L. Zhou, Y.B. Lin, Y.W. Dong, C.J. Pan, Ceram. Int. 44, 5692–5698 (2018)CrossRefGoogle Scholar
  25. 25.
    X.J. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)CrossRefGoogle Scholar
  26. 26.
    F. Sauvage, F.D. Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, M. Grätzel, Nano Lett. 10, 2562–2567 (2010)CrossRefGoogle Scholar
  27. 27.
    W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Sci. Rep. 3, 1352 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Qu, G.R. Li, X.P. Gao, Energy Environ. Sci. 3, 2003–2009 (2010)CrossRefGoogle Scholar
  29. 29.
    H.X. Wang, M.N. Liu, M. Zhang, P. Wang, H. Miura, Y. Cheng, J. Bell, Phys. Chem. Chem. Phys. 13, 17359–17366 (2011)CrossRefGoogle Scholar
  30. 30.
    D.K. Roh, W.S. Chi, H. Jeon, S.J. Kim, J.H. Kim, Adv. Funct. Mater. 24, 379–386 (2014)CrossRefGoogle Scholar
  31. 31.
    D.K. Roh, W.S. Chi, S.H. Ahn, H. Jeon, J.H. Kim, ChemSusChem 6, 1384–1391 (2013)CrossRefGoogle Scholar
  32. 32.
    F. Shao, J. Sun, L. Gao, S. Yang, J. Luo, J. Mater. Chem. 22, 6824–6830 (2012)CrossRefGoogle Scholar
  33. 33.
    M.J. Bierman, S. Jin, Energy Environ. Sci. 2, 1050–1059 (2009)CrossRefGoogle Scholar
  34. 34.
    H. Wang, B. Li, J. Gao, M. Tang, H.B. Feng, J.H. Li, L. Guo, CrystEngComm 14, 5177–5181 (2012)CrossRefGoogle Scholar
  35. 35.
    X. Wu, G.Q. Lu, L. Wang, Energy Environ. Sci. 4, 3565–3572 (2011)CrossRefGoogle Scholar
  36. 36.
    K. Bourikas, C. Kordulis, A. Lycourghiotis, Chem. Rev. 114, 9754–9823 (2014)CrossRefGoogle Scholar
  37. 37.
    X.Y. Tao, Y.M. Wang, X. Zhang, H.X. Sun, Q.S. Zhang, L.Y. Niu, J. Liu, X.F. Zhou, J. Alloy. Compd. 631, 202–208 (2015)CrossRefGoogle Scholar
  38. 38.
    F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083–9118 (2011)CrossRefGoogle Scholar
  39. 39.
    B.H. Lee, M.Y. Song, S.Y. Jang, S.M. Jo, S.Y. Kwak, D.Y. Kim, J. Phys. Chem. C 113, 21453–21457 (2009)CrossRefGoogle Scholar
  40. 40.
    P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphrey-Baker, M. Grätzel, J. Phys. Chem. B 107, 14336–14341 (2003)CrossRefGoogle Scholar
  41. 41.
    K.L. Lv, J.G. Yu, L.Z. Cui, S.L. Chen, M. Li, J. Alloy. Compd. 509, 4557–4562 (2011)CrossRefGoogle Scholar
  42. 42.
    K.M. Guo, M.Y. Li, X.L. Fang, L.H. Bai, M.D. Luoshan, F.P. Zhang, X.Z. Zhao, J. Power Sources 264, 35–41 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, Adv. Mater. 21, 3663–3667 (2009)CrossRefGoogle Scholar
  44. 44.
    L.Y. Niu, Q.S. Zhang, J. Liu, J. Qian, X.F. Zhou, J. Alloy. Compd. 656, 863–870 (2016)CrossRefGoogle Scholar
  45. 45.
    Q. Wang, J.E. Moser, M. Grätzel, J. Phys. Chem. B 109, 14945–14953 (2005)CrossRefGoogle Scholar
  46. 46.
    M. Adachi, M. Sakamoto, J.T. Jiu, Y. Ogata, S. Isoda, J. Phys. Chem. B 110, 13872–13880 (2006)CrossRefGoogle Scholar
  47. 47.
    Y.J. Kim, M.H. Lee, H.J. Kim, G. Lim, Y.S. Choi, N.G. Park, K. Kim, W.I. Lee, Adv. Mater. 21, 3668–3673 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhaobin Zhang
    • 1
  • Wanxian Cai
    • 1
  • Yanqi Lv
    • 1
  • Yuanzeng Jin
    • 1
  • Koucheng Chen
    • 1
  • Ling Wang
    • 1
  • Xingfu Zhou
    • 1
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations