Advertisement

Morphology-controlled synthesis and gas-sensing properties of Fe2(MoO4)3 microspheres

  • Shuang Zou
  • Zhidong LinEmail author
  • Ping Fu
  • Shenggao Wang
  • Zhe Chen
  • Liming Liu
  • Xiaowen Zhang
Article
  • 17 Downloads

Abstract

3D Fe2(MoO4)3 microspheres were prepared by hydrothermal method with polyethylene glycol (PEG) assisted. The structure, morphology and crystal phase of the 3D Fe2(MoO4)3 microspheres samples were characterized by X-ray power diffraction and scanning electron microscopy. The 3D Fe2(MoO4)3 microspheres were composed of nanosheets. The diameter of 3D Fe2(MoO4)3 microsphere and thickness of nanosheets were controlled by the molecular weight of PEG. The size of microsphere decreased with the molecular weight increase, the Fe2(MoO4)3 microspheres prepared with PEG-2000 showed the minimum mean diameter of 17.8 μm and nanosheets thickness of 65 nm. The sensors based on the hierarchical 3D Fe2(MoO4)3 exhibited excellent gas sensing performances, which showed high response to n-butanol at low operating temperature and high response to acetone at relatively high operating temperature. The highest responses of sensor were 5.7 and 3.4 to 1 ppm n-butanol and acetone at corresponding optimum working temperature. The Fe2(MoO4)3 microspheres have a potential application in n-butanol and acetone detection, and it can be applied in diabetes diagnosis due to good low concentration response to acetone.

Notes

Acknowledgements

The authors are grateful for financial support from Zhongshan Innovative Research Team Program (180809162197886), Guangxi Natural Science Foundation (2018GXNSFDA294002).

References

  1. 1.
    M.R.R. Khan, B.H. Kang, S.H. Yeom, D.H. Kwon, S.W. Kang, Sens. Actuators B 188(11), 689–696 (2013)CrossRefGoogle Scholar
  2. 2.
    H. Nguyen, S.A. El-Safty, J. Phys. Chem. C 115(17), 8466–8474 (2011)CrossRefGoogle Scholar
  3. 3.
    F.C. Yang, J. Guo, M.M. Liu, S. Yu, N.B. Yan, J. Li, Z.G. Guo, J. Mater. Chem. A 3(41), 20477–20481 (2015)CrossRefGoogle Scholar
  4. 4.
    W. Hui, Q. Yang, C. Hao, Z. Lin, D. Ke, Sens. Actuators B 201(201), 153–159 (2014)Google Scholar
  5. 5.
    C. Deng, J. Zhang, X. Yu, W. Zhang, X. Zhang, J. Chromatogr. B 810(2), 269–275 (2004)CrossRefGoogle Scholar
  6. 6.
    C.L. Cheng, P.Y. Che, B.Y. Chen, W.J. Lee, L.J. Chien, J.S. Chang, Bioresour. Technol. 113(113), 58–64 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Wang, Y. Qu, Y.Z. Li, H. Chen, Z.D. Lin, J. Nanosci. Nanotechnol. 13(3), 1858–1862 (2013)CrossRefGoogle Scholar
  8. 8.
    W. Xiong, H.H. Liu, S.T. Liu, Microchim. Acta 182(13–14), 2345–2352 (2015)CrossRefGoogle Scholar
  9. 9.
    L. Xiao, S.M. Shu, S.T. Liu, Sens. Actuator B 221, 120–126 (2015)CrossRefGoogle Scholar
  10. 10.
    Z.B. Dong, S.T. Liu, J. Mater. Sci. 29(4), 2645–2653 (2018)Google Scholar
  11. 11.
    Z.D. Lin, F. Guo, C. Wang, X.H. Wang, K. Wang, Y. Qu, RSC Adv. 4(10), 5122–5129 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Wang, Y. Qu, H. Chen, Z.D. Lin, K. Dai, Sens. Actuator B 201, 153–159 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Xiao, S.R. Xu, G. Yu, S.T. Liu, Sens. Actuators B 255, 2002–2010 (2018)CrossRefGoogle Scholar
  14. 14.
    P. Song, Q. Wang, Z. Yang, Mater. Lett. 86, 168–170 (2012)CrossRefGoogle Scholar
  15. 15.
    L. Liu, H. Wang, X. Zhang, Z. Lin, Sens. Actuators B 237, 275–283 (2016)CrossRefGoogle Scholar
  16. 16.
    S.M. Shu, C. Wang, S.T. Liu, Front. Mater. Sci. 12(2), 176–183 (2018)CrossRefGoogle Scholar
  17. 17.
    J. Liang, M. Zhuo, D. Guo, Z. Chen, W. Ren, M. Zhang, Q. Li, Mater. Lett. 168, 171–175 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Lin, M. Xu, P. Fu, Q. Deng, Sens. Actuators B 254, 755–762 (2017)CrossRefGoogle Scholar
  19. 19.
    Ü. Kersen, L. Holappa, Appl. Phys. A 85(4), 431–436 (2006)CrossRefGoogle Scholar
  20. 20.
    Y.J. Chen, X.M. Gao, X.P. Di, Q.Y. Ouyang, P. Gao, L.H. Qi, C.Y. Li, C.L. Zhu, Appl. Mater. Interfaces 5(8), 3267–3274 (2013)CrossRefGoogle Scholar
  21. 21.
    Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Sensors 12(3), 2610–2631 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Brookes, P.P. Wells, N. Dimitratos, W. Jones, E.K. Gibson, D.J. Morgan, G. Cibin, C. Nicklin, D. Mora-Fonz, D.O. Scanlon, C.R.A. Catlow, M. Bowker, J. Phys. Chem. C 118(45), 26155–26161 (2014)CrossRefGoogle Scholar
  23. 23.
    J.L. Yue, Y.N. Zhou, S.Q. Shi, Z. Shadike, X.Q. Huang, J. Luo, Z.Z. Yang, H. Li, L. Gu, X.Q. Yang, Z.W. Fu, Sci. Rep. 5, 8810 (2015)CrossRefGoogle Scholar
  24. 24.
    Y. Ding, S.H. Yu, C. Liu, Z.A. Zang, Chemistry 13(3), 746 (2007)CrossRefGoogle Scholar
  25. 25.
    H. Zheng, S. Wang, J. Wang, J. Wang, L. Li, Y. Yang, C. Feng, Z. Sun, J. Nanoparticle Res. 17(11), 321 (2015)CrossRefGoogle Scholar
  26. 26.
    W. Chen, Y.J. Zhu, T. Kanbara, H.Z. Zhu, C.F. Xiao, Desalination 249(2), 621–625 (2009)CrossRefGoogle Scholar
  27. 27.
    H.Y. Liu, W. Yang, M.X. Wang, L. Xiao, S.T. Liu, Sens. Actuators B 236, 490–498 (2016)CrossRefGoogle Scholar
  28. 28.
    Z.H. Jing, J.H. Zhan, Adv. Mater. 20(23), 4547–4551 (2010)CrossRefGoogle Scholar
  29. 29.
    W. Wang, H. Hao, Y. Xu, C. He, X. Li, J. Mater. Sci. 48(8), 3232–3238 (2013)CrossRefGoogle Scholar
  30. 30.
    C.H. Zhu, W.Y. Guo, F.P. Du, P. Fu, Q.R. Deng, Z.D. Lin, Mater. Lett. 220, 172–174 (2018)CrossRefGoogle Scholar
  31. 31.
    Z.W. Chen, Y.Y. Hong, Z.D. Lin, L.M. Liu, X.W. Zhang, Electron. Mater. Lett. 13(3), 270–276 (2017)CrossRefGoogle Scholar
  32. 32.
    X.L. Yu, C.S. Xie, L. Yang, S.P. Zhang, Sens. Actuators B 195, 439–445 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Xu, C. Nan, X. Xing, Y. Li, X. Xiao, Y. Wang, I. Djerdj, RSC Adv. 5(67), 54372–54378 (2015)CrossRefGoogle Scholar
  34. 34.
    B. Han, L. Xu, X. Xing, C. Nan, X. Xiao, S. Liu, Y. Wang, Sens. Actuators B 237, 423–430 (2016)CrossRefGoogle Scholar
  35. 35.
    H. Zhang, Q. He, X. Zhu, D. Pan, X. Deng, J. Zheng, CrystEngComm 14(9), 3169–3176 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Zhu, W. Guo, F. Du, F. Ping, Q. Deng, Z. Lin, Mater. Lett. 220, 172–174 (2018)CrossRefGoogle Scholar
  37. 37.
    J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun, J. Liu, ChemInform 33(8), 572–579 (2010)Google Scholar
  38. 38.
    L. Jing, F. Ping, Q. Yang, Z. Lin, Z. Wen, Physica E 103, 71–75 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Li, S. Shu, S. Liu, Sens. Actuators B 221, 120–126 (2015)CrossRefGoogle Scholar
  40. 40.
    L.Y. Liu, S.T. Liu, ACS Sustain. Chem. Eng. 6(10), 13427–13434 (2018)CrossRefGoogle Scholar
  41. 41.
    Z.D. Lin, N. Li, Z. Chen, P. Fu, Sens. Actuator B 239, 501–510 (2017)CrossRefGoogle Scholar
  42. 42.
    Z.X. Lin, J.M. Gong, P. Fu, J. Mater. Sci. 28(5), 4424–4430 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Plasma Chemistry and Advanced MaterialsWuhan Institute of TechnologyWuhanPeople’s Republic of China
  2. 2.Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of China, Zhongshan InstituteZhongshanPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinPeople’s Republic of China

Personalised recommendations