Advertisement

Ionic liquid assisted synthesis of chromium oxide (Cr2O3) nanoparticles and their application in glucose sensing

  • Bhagyashri B. Kamble
  • Mahesh Naikwade
  • K. M. Garadkar
  • Rahul B. Mane
  • Kiran Kumar K. Sharma
  • Balu D. Ajalkar
  • Shivaji N. TayadeEmail author
Article
  • 1 Downloads

Abstract

Here we report a solvothermal–hydrothermal based method for the synthesis of spherical chromium oxide (Cr2O3) nanoparticles in 1-butyl-3-methyl imidazolium bromide ([BMIM]+[Br]) and water (1:1 V/V) as a solvent. Electrochemical glucose sensing was performed by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The working electrode, glassy carbon electrode (GCE) was modified by using the synthesized Cr2O3 nanoparticles. The performance of the Cr2O3 nanoparticles modified GCE for glucose sensing is found to be highly sensitive with the limits of detection 1.47 × 10−4 M (LOD) and limits of quantification (LOQ) 4.91 × 10−4 M. The linear range of glucose detection is determined to be 2.78 × 10−4 M to 1.94 × 10−3 M. The sensitivity of the modified GCE for glucose is determined to be 2.25 × 10−2 A L mol−1 cm−2. From DPV, LOD corresponds to 1.08 × 10−4 M while the LOQ is determined at 3.60 × 10−4 M. The linear range of glucose detection by DPV is lower, 8.33 × 10−4 M to 1.94 × 10−3 M than that of CV. The glucose sensitivity also improves to 3.07 × 10−3 A L mol−1 cm−2 by DPV technique. Finally, the Cr2O3 nanoparticles modified GCE is used successfully to determine the glucose contents in human urine samples.

Notes

Acknowledgement

BBK and SNT are thankful to director of SNST, Shivaji University Kolhapur (Grant No. SU/C & U.D. Section/95/1391) for providing instrumentation facility. SNT thanks BCUD/IRA SUK Kolhapur for minor research project.

References

  1. 1.
    A. Heller, B. Feldman, Chem. Rev. 108, 2482 (2008)CrossRefGoogle Scholar
  2. 2.
    S.B. Bambot, J.R. Lakowicz, G. Rao, Biotechnology 13, 106 (1995)Google Scholar
  3. 3.
    T.J. O’Shea, S.M. Lunte, W.R. LaCourse, Anal. Chem. 65, 948 (1993)CrossRefGoogle Scholar
  4. 4.
    S. Park, H. Boo, T.D. Chung, Anal. Chim. Acta 556, 46 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Liu, Y. Lu, J. Am. Chem. Soc. 125, 6642 (2003)CrossRefGoogle Scholar
  7. 7.
    Y. Miwa, M. Nishizawa, T. Matsue, I. Uchida, Bull. Chem. Soc. Jpn. 67, 2864 (1994)CrossRefGoogle Scholar
  8. 8.
    S. Mansouri, J.S. Schultz, Nat. Biotechnol. 2, 885 (1984)CrossRefGoogle Scholar
  9. 9.
    J.C. Pickup, F. Hussain, N.D. Evans, O.J. Rolinski, J. Birch. Biosens. Bioelectron. 20, 2555 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Wang, Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13, 983 (2001)CrossRefGoogle Scholar
  11. 11.
    G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Microchim. Acta 180, 161 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, RSC Adv. 3, 4473 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Iu, H. Teng, H. Hou, T. You, Biosens. Bioelectron. 24, 3329 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Zhu, L. Li, Z. Wei, W.Z. Shao, X. C. Xianjian. J. Mater. Chem. 214, 7333 (2009)Google Scholar
  15. 15.
    Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis 22, 1027 (2010)CrossRefGoogle Scholar
  16. 16.
    J. Tian, Q. Liu, C. Ge, Z. Xing, A.M. Asiri, A.O. AlYoubi, X. Sun, Nanoscale. 5, 8921 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Lee, S.W. Yoon, E.J. Kim, J. Park, Nano Lett. 7, 778 (2007)CrossRefGoogle Scholar
  18. 18.
    P.C. Pandey, J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases. 84, 2259 (1988)Google Scholar
  19. 19.
    S. Liu, B. Yu, T. Zhang, Electrochim. Acta. 102, 104 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, Ionics. 23(6), 1553 (2017)CrossRefGoogle Scholar
  21. 21.
    M. Chowdhury, F. Cummings, M. Kebede, V. Fester, Electroanalysis 29, 578 (2017)CrossRefGoogle Scholar
  22. 22.
    L.C. Jiang, W.D. Zhang, Biosens. Bioelectron. 25, 1402 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Parvin, S. Saeed, I. Azamzad, J. Electroanal. Chem. 823, 505 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Deng, H. Li, S. Li, Y. Zhang, J. Mol. Catal. Chem. 268, 169 (2007)CrossRefGoogle Scholar
  25. 25.
    D.W. Kim, S.I. Shin, J.D. Lee, S.G. Oh, Mater. Lett. 58, 1894 (2004)CrossRefGoogle Scholar
  26. 26.
    X. Hou, K.L. Choy, Thin Solid Films. 516, 8620 (2008)CrossRefGoogle Scholar
  27. 27.
    X. Pang, K. Gao, F. Luo, Y. Emirov, A.A. Levin, A.A. Volinsky, Thin Solid Films. 517, 1922 (2009)CrossRefGoogle Scholar
  28. 28.
    P. Jayamurugan, R. Mariappan, K. Premnazeer, S. Ashokan, Y.V. Rao, N.V.S.S. Rao, C. Shanmugapriya, Appl. Sens. Imaging 18, 18 (2017)CrossRefGoogle Scholar
  29. 29.
    P.M. Kharade, S.G. Chavana, S.S. Mane, P.B. Joshi, D.J. Salunkhe, J. Chin. Adv. Mater. Soc. 4(1), 1 (2015)CrossRefGoogle Scholar
  30. 30.
    A.L. Rashedi, M. Farooqui, G. Rabbani, Oriental J. Chem. 4, 2203 (2018)CrossRefGoogle Scholar
  31. 31.
    A.B.C. Ekwealor, Digest J. Nanomater. Biostruc. 9, 423 (2014)Google Scholar
  32. 32.
    H. Sun, L. Wang, D. Chu, Z. Ma, A. Wang, Mater. Lett. 140, 35 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Dupont, C.S. Consorti, P.A. Suarez, R.F. de Souza, Preparation of 1-butyl-3-methyl imidazolium-based room temperature ionic liquids. Org. Synth. 10, 184 (2004)Google Scholar
  34. 34.
    A. Alaa, A. Aljabali, J. Barclay, N. Jule, B.P. George, A. Lomonossoffa, D.J. Evans, Dalton Trans. 39, 75 (2010)Google Scholar
  35. 35.
    J.O. Bockris, A.K.N. Reddy, Modern Electrochem. 2, 1 (1973).  https://doi.org/10.1007/978-1-4613-4560-2 Google Scholar
  36. 36.
    M. Roy, S. Ghosh, M. Naskar, Mater. Chem. Phys. 159, 101 (2015)CrossRefGoogle Scholar
  37. 37.
    M.M. Abdullah, F.M. Rajab, S.M. Al-Abbas, AIP Adv. 4, 027121 (2014)CrossRefGoogle Scholar
  38. 38.
    T. Ivanova, K. Gesheva, A. Cziraki, A. Szekeres, E. Vlaikova, J. Phys. Conf. Ser. 113, 1 (2008)CrossRefGoogle Scholar
  39. 39.
    S. Rakesh, A. Netkal, M. Gowda, Modern Res. Catal. 2, 127 (2013)CrossRefGoogle Scholar
  40. 40.
    T. Rajkumar, G. Rao, Mater. Chem. Phys. 112, 853 (2008)CrossRefGoogle Scholar
  41. 41.
    L.D. Zhang, C.M. Mo, W.L. Cai, G. Chen, Nanostruct. Mater. 9, 563 (1997)CrossRefGoogle Scholar
  42. 42.
    K. Reddaiah, T. Reddy, P. Raghu, J. Electroanal. Chem. 682, 164 (2012)CrossRefGoogle Scholar
  43. 43.
    T. Reddy, M. Sreedhar, S.J. Reddy, J. Pharm. Biomed. Anal. 31, 811 (2003)CrossRefGoogle Scholar
  44. 44.
    Y. Ni, J. Xu, Q. Liang, S. Shao, Sens. Actuat. Chem. 250, 491 (2017)CrossRefGoogle Scholar
  45. 45.
    L. Rui, L. Xiongjun, W. Hui, W. Yuan, K.C. Chan, L. Zhaoping, Electrochimica Acta. 299, 470 (2019)CrossRefGoogle Scholar
  46. 46.
    S.K. Maji, A.K. Dutta, G.R. Bhadu, P. Paul, A. Mondal, B. Adhikary, J. Mater. Chem. B. 1, 4127 (2013)CrossRefGoogle Scholar
  47. 47.
    J. Chen, W.D. Zhang, J.S. Ye, Electrochem. Commun. 10, 1268 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Park, H. Boo, T. Dong, Chung. Analytica. Chimica. Acta. 556, 46 (2006)CrossRefGoogle Scholar
  49. 49.
    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications (Wiley, New York, 2001)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shivraj College GadhinglajShivaji UniversityKolhapurIndia
  2. 2.Department of ChemistryShivaji UniversityKolhapurIndia
  3. 3.School of Nanoscience and BiotechnologyShivaji UniversityKolhapurIndia

Personalised recommendations