Growth, structure perfection and characterization of 2-methylimidazolium hydrogen oxalate dihydrate (2MIO) single crystal for NLO applications

  • K. ElangovanEmail author
  • A. Senthil
  • G. Vinitha


2-Methylimidazolium hydrogen oxalate dihydrate (2MIO) organic single crystals of good quality have been grown by slow evaporation solution growth technique (SEST). Structure of the compound was determined by single crystal X-ray diffraction (SCXRD) analysis and it reveals that 2MIO crystallized in monoclinic space group P21/n. The high resolution X-ray diffraction (HRXRD) analysis was carried out to find the crystalline quality. The functional groups of 2MIO have been identified by FT-Raman and FT-IR analyses. The optical UV–Vis–NIR transmittance was recorded and the cut-off edge was found at 314 nm. It is worthwhile to mention that the stability and decomposition of the 2MIO material were established by the analysis of TG/DTG and DSC measurements. The crystal hardness was obtained. The dielectric property studies were carried out at different temperatures. Nonlinear optical susceptibility was determined for 2MIO by Z-scan study.



  1. 1.
    Chi Zhang, Yinglin Song, Xin Wang, Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study. Coord. Chem. Rev. 251, 111 (2007)CrossRefGoogle Scholar
  2. 2.
    P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers (Wiley, New York, 1991), pp. 2–10Google Scholar
  3. 3.
    Marko Spasenović, Markus Betz, Louis Costa, Henry M. van Driel, All-optical coherent control of electrical currents in centrosymmetric semiconductors. Phys. Rev. B 77, 085201 (2008)CrossRefGoogle Scholar
  4. 4.
    D.J. Williams, Nonlinear Optical Properties of Organic and Polymeric Materials, ed. ACS Symposium Series 233, (American Chemical Society, Washington DC, 1983)Google Scholar
  5. 5.
    S. R. Marder, J. E. Sohn and G. D. Stucky, Materials for Nonlinear Optics: Chemical Perspectives, ed. ACS Symposium Series 455, (American Chemical Society, Washington DC, 1991)Google Scholar
  6. 6.
    J. Zyss, Molecular Nonlinear Optics, ed. (Academic Press, New York, 1994)Google Scholar
  7. 7.
    W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)CrossRefGoogle Scholar
  8. 8.
    C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, M.V. Bonder, Photochromic polymer composites for two-photon 3D optical data storage. Chem. Mater. 19, 5165–5173 (2007)CrossRefGoogle Scholar
  9. 9.
    C.Q. Tang, Q. Zheng, H.H. Zhu, L.X. Wang, S.C. Chen, E. Ma, X.Y. Chen, Two-photon absorption and optical power limiting properties of ladder-type tetraphenylene cored chromophores with different terminal groups. J. Mater. Chem. C 1, 1771–1780 (2013)CrossRefGoogle Scholar
  10. 10.
    C.V. Ramana et al., Low-energy Ar+ ion-beam-induced amorphization and chemical modification of potassium titanyl arsenate (001) crystal surfaces. J. Phys. Chem. 111(6), 2702–2708 (2007)Google Scholar
  11. 11.
    Zhi-Shu Feng et al., SHG in doped GaSe: in crystals. Opt. Express 11, 9979–9985 (2008)Google Scholar
  12. 12.
    V.V. Atuchin et al., Structural and spectroscopic properties of new noncentrosymmetric self-activated borate Rb3EuB6O12 with B5O10 units. Mater. Des. 140, 488–494 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Baraniraj, P. Philominathan, Growth and characterization of organic nonlinear optical material: benzilic acid. J. Cryst. Growth 311(15), 3849–3854 (2009)CrossRefGoogle Scholar
  14. 14.
    Chengmin Ji, Tianliang Chen, Zhihua Sun, Yan Ge, Wenxiong Lin, Junhua Luo, Qian Shi, Maochun Hong, Bulk crystal growth and characterization of imidazolium l-tartrate (IMLT): a novel organic nonlinear optical material with a high laser-induced damage threshold. CrystEngComm 15, 2157–2162 (2013)CrossRefGoogle Scholar
  15. 15.
    Xiaohua Ma, Ran Liang, Fan Yang, Zhenhua Zhao, Aixin Zhang, Naiheng Song, Qifeng Zhou, Jianping Zhang, Synthesis and properties of novel second-order NLO chromophores containing pyrrole as an auxiliary electron donor. J. Mater. Chem. 18, 1756–1764 (2008)CrossRefGoogle Scholar
  16. 16.
    Xiaohua Ma, Fei Ma, Zhenhua Zhao, Naiheng Song, Jianping Zhang, Synthesis and properties of NLO chromophores with fine-tuned gradient electronic structures. J. Mater. Chem. 19, 2975–2985 (2009)CrossRefGoogle Scholar
  17. 17.
    B. Hachula, M. Pedras, M. Nowak, J. Kusz, D. Pentak, J. Borek, The crystal structure and spectroscopic properties of catena-[2-methylimidazolium bis (μ2-chloro) aquachloromanganese(II)]. J. Serb. Chem. Soc. 76, 235–247 (2011)CrossRefGoogle Scholar
  18. 18.
    P. Moore-Testa, Y. Saint-Jalm, A. Testa, Identification and determination of Imidazole derivatives in cigarette smoke. J. Chromatogr. 290, 263–274 (1984)CrossRefGoogle Scholar
  19. 19.
    T.P. Srinivasan, S. Anandhi, R. Gopalakrishnan, Growth and characterization of 2-methylimidazolium d-tartrate single crystal. J. Cryst. Growth 318, 768–773 (2011)CrossRefGoogle Scholar
  20. 20.
    T. Dhanabal, M. Sethurama, G. Amrithaganesan, Samar K. Das, Spectral, thermal, structural, optical and antimicrobial activity studies on 2-methylimidazolinium picrate—an organic charge transfer complex. J. Mol. Struct. 1045, 112–123 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal. Mater. Res. Bull. 81, 33–42 (2016)CrossRefGoogle Scholar
  22. 22.
    M.B. Diop, L. Diop, L. Plasseraud, H. Cattey, Crystal structure of 2-methyl-1H-imidazol-3-ium hydrogen oxalate dehydrate. Acta Cryst. E72, 1113–1115 (2016). Google Scholar
  23. 23.
    G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bart-wal, A study of the effect of annealing on Fe-doped LiNbO3 by HRXRD, XRT and FT-IR. J. Appl. Cryst. 38, 768–771 (2005)CrossRefGoogle Scholar
  24. 24.
    B.W. Batterman, H. Cole, Dynamical diffraction of X rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964)CrossRefGoogle Scholar
  25. 25.
    G. Bhagavannarayana, G. Parthiban, S. Meenakshisundaram, An interesting correlation between crystalline perfection and second harmonic generation efficiency on KCl- and oxalic acid-doped ADP crystals. Cryst. Growth Des. 8(2), 446–451 (2008)CrossRefGoogle Scholar
  26. 26.
    V.K. Rastogi, M.A. Palafox, R.P. Tanwar, L. Mittal, 3,5-Difluorobenzonitrile: ab initio calculations, FTIR and Raman spectra. Spectrochim. Acta 58(9), 1987–2004 (2002)CrossRefGoogle Scholar
  27. 27.
    M. Silverstein, G.C. Basseler, C. Morill, Spectrometric identification of organic compounds (Wiley, New York, 1981)Google Scholar
  28. 28.
    G. Socrates, Infrared Characteristic Group of Frequencies (Wiley, New York, 1980)Google Scholar
  29. 29.
    G. Varasanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (Wiley, New York, 1974)Google Scholar
  30. 30.
    M. Govindarajan, S. Periandy, K. Ganesan, J. Chem. 7(2), 457–464 (2010)Google Scholar
  31. 31.
    G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Academic Press, New York, 1969)Google Scholar
  32. 32.
    M. Govindarajan, K. Ganasan, S. Periandy, M. Karabacak, G. Varsanyi, Experimental (FT-IR and FT-Raman), electronic structure and DFT studies on 1-methoxynaphthalene. Spectrochim. Acta A 79, 646–653 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds (Wiley, New York, 2003)Google Scholar
  34. 34.
    J.F. Arenas, J.T. Lopez Navarrete, J.I. Marcos, J.C. Otero, J. Chem. Soc. Faraday Trans. 81, 405–416 (1985)CrossRefGoogle Scholar
  35. 35.
    N. Sundarganesan, S. Ayyappan, H. Umamaheswari, B.D. Joshua, FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine. Spectrochim. Acta A 66, 17–27 (2007)CrossRefGoogle Scholar
  36. 36.
    N.N. Golovnev, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, Calcium and strontium thiobarbiturates with discrete and polymeric structures. J. Coord. Chem. 66(23), 4119–4130 (2013)CrossRefGoogle Scholar
  37. 37.
    R.M. Silverstein, F.X. Webster, D.J. Klemie, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, New York, 2005)Google Scholar
  38. 38.
    B.H. Stuart, Infrared Spectroscopy: Fundamental and Applications (Wiley, New York, 2004)CrossRefGoogle Scholar
  39. 39.
    D.N. Sathyanarayana, Vibrational Spectroscopy Theory and Application (New Age International Publishers, New Delhi, 2004)Google Scholar
  40. 40.
    M. Arivazhagan, S. Jeyavijayan, FTIR and FT-Raman spectra, assignments, ab initio HF and DFT analysis of xanthine. Spectrochim. Acta A 79, 161–168 (2011)CrossRefGoogle Scholar
  41. 41.
    D.L. Vein, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, San Diego, 1991)Google Scholar
  42. 42.
    N. Nicolay et al., The 5-(isopropylidene)-2-thiobarbituric acid: preparation, crystal structure, thermal stability and IR characterization. J. Mol. Struct. 1068, 216–221 (2014)CrossRefGoogle Scholar
  43. 43.
    N.N. Golovne, M.S. Molokeev, S.N. Vereshchagin, V.V. Atuchin, Synthesis and thermal transformation of a neodymium(III) complex [Nd(HTBA)2(C2H3O2)(H2O)2]·2H2O to non-centrosymmetricorcosulfate Nd2O2SO4. J. Coord. Chem. 68, 1865–1877 (2015)CrossRefGoogle Scholar
  44. 44.
    B. Smith, Infrared Spectral Interpretation, A Systematic Approach (CRC Press, Washington, 1999)Google Scholar
  45. 45.
    R.M. Silverstein, F.X. Webster, Spectrometric Identification of Organic Compounds, 6th edn. (Wiley, New York, 2002)Google Scholar
  46. 46.
    N.N. Golovnev, M.S. Molokeev, Alexaner S. Samoilo, V.V. Atuchin, Influence of alkyl substitutions in 1,3-diethyl-2-thiobarbituric acid on the coordination environment in M(H2O)2(1,3-diethyl-2-thiobarbiturate)2 M = Ca2+, Sr2+. J. Coord. Chem. 69(6), 957–965 (2016)CrossRefGoogle Scholar
  47. 47.
    N.N. Golovnev, M.S. Molokeev, M.K. Lesnikov, V.V. Atuchin, First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)6](1,3-diethyl-2-thiobarbiturate)2·2H2O (M = Co2+, Ni2+): crystal structures, spectroscopic and thermal properties. Chem. Phys. Lett. 653(2016), 54–59 (2016)CrossRefGoogle Scholar
  48. 48.
    N.N. Golovnev, L.A. Solovyov, M.K. Lesnikov, S.N. Vereshchagin, V.V. Atuchin, Hydrated and anhydrous cobalt(II) barbiturates: crystal structures, spectroscopic and thermal properties. Inorg. Chim. Acta 467, 39–45 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Tauc, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  50. 50.
    N. Chopra, A. Mansingh, G.K. Chadha, Electrical, optical and structural properties of amorphous V2O5 TeO2 blown films. J. Non-Cryst. Solids 126, 194–201 (1990)CrossRefGoogle Scholar
  51. 51.
    V.V. Atuchin, L.I. Isaenko, V.G. Kesler, Z.S. Ln, M.S. Molokeev, A.P. Yelisseyev, S.A. Zhurkov, Exploration on anion ordering, optical properties and electronic structure in K3WO3F3 elpasolite. J. Solid State Chem. 187, 159–164 (2012)CrossRefGoogle Scholar
  52. 52.
    V.V. Atuchin et al., Structural, spectroscopic and electronic properties of cubic Go-Rb KTiOF5 oxyfluoride. J. Phys. Chem. C 117, 7269–7278 (2013)CrossRefGoogle Scholar
  53. 53.
    V.V. Atuchin et al., Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Adv. Powder Technol. 28, 1309–1315 (2017)CrossRefGoogle Scholar
  54. 54.
    A. Dev, S. Chakrabarti, S. Kar, S. Chaudhuri, Optical properties of Mg0.05Zn0.95O/SiO2 nanocomposite films prepared by sol–gel technique. J. Nanopart. Res. 7, 195–201 (2005)CrossRefGoogle Scholar
  55. 55.
    S. Banerjee, A. Kumar, Swift heavy ion irradiation induced modifications in the optical band gap and Urbach’s tail in polyaniline nanofibers. Nucl. Instr. Meth. Phys. Res. B 269, 2798–2806 (2011)CrossRefGoogle Scholar
  56. 56.
    N. Sinha, B.K. Sahas, K. Singh, N. Kumar, M.K. Singh, G.C. Gupta, B. Budakoti, Kumar, Solution growth and comparative characterization of L-HFB single crystals. Cryst. Res. Technol. 44, 167–172 (2009)CrossRefGoogle Scholar
  57. 57.
    M.S. Pandian, P. Ramasamy, Conventional slow evaporation and Sankaranarayanan-Ramasamy (SR) method grown diglycine zinc chloride (DGZC) single crystal and its comparative study. J. Cryst. Growth 312, 413–419 (2010)CrossRefGoogle Scholar
  58. 58.
    J.L. Souza, A.F. Santos, L. Polese, S. Crespi Marisa, C.A. Ribeiro, Thermal behavior of the maleic anhydride modified poly(3-hydroxybutyrate). J. Therm. Anal. Calorim. 87, 673–677 (2007)CrossRefGoogle Scholar
  59. 59.
    U. Shuali, S. Yarv, M. Steinberg, M. Muller-Vonmoos, G. Kahr, A. Rub, Thermal analysis of pyridine-treated sepiolite and palygorskite. Clay Miner. 26, 497–506 (1991)CrossRefGoogle Scholar
  60. 60.
    B. Barszcz, J. Masternak, W. Surga, Thermal properties of Ca(II) and Cd(II) complexes of pyridinedicarboxylates correlation with crystal structures. J. Therm. Anal. Calorim. 101, 633–639 (2010)CrossRefGoogle Scholar
  61. 61.
    R. Prasad, Kumar A. Sulaxna, Kinetics of thermal decomposition of iron(III) dicarboxylate complexes. J. Therm. Anal. Calorim. 81, 441–450 (2005)CrossRefGoogle Scholar
  62. 62.
    T. Hatakeyama, Z. Liu, Handbook of Thermal Analysis (Wiley, Chichester, 1998)Google Scholar
  63. 63.
    P. Gabbot, A practical introduction to differential scanning calorimetry, in Principles and Applications of Thermal Analysis, ed. by P. Gabbot (Blackwell, Oxford, 2008), pp. 1–50CrossRefGoogle Scholar
  64. 64.
    K.K. Rao, D.B. Sirdeshmukh, Microhardness and interatomic binding in some cubic crystals. Bull. Mater. Sci. 5, 449–452 (1983)CrossRefGoogle Scholar
  65. 65.
    C. Vesta, R. Uthrakumar, C. Justin Raj, A. Jonie Varjula, J. Mary Linet, S. Jerome Das, Growth, structural and microhardness studies on new semiorganic single crystals of calcium para nitrophenolate dihydrate. J. Mater. Sci. Technol. 23(6), 855–859 (2007)Google Scholar
  66. 66.
    E. Chacko, J. Mary Linet, S.M. Navis Priya, C. Vesta, B. Milton Boaz, S. Jerome Das, Growth and microhardness studies of mixed crystals of (NH4)2SbF5 − K2SbF5. Indian J. Pure Appl. Phys. 44, 260–263 (2006)Google Scholar
  67. 67.
    K. Sangwal, M. Hordyjewicz, B.J. Surowska, Microindentation hardness of SrLaAlO4 and SrLaGaO4 single crystals. J Optoelectron. Adv. Mater. 4, 875–882 (2002)Google Scholar
  68. 68.
    E.M. Onitsch, Microscopia 2, 131–151 (1947)Google Scholar
  69. 69.
    S. Panchapakesan, K. Subramani, S. Brahadeeswaran, Growth, characterization and quantum chemical studies of an organic single crystal: 3-aminopyridine 4-nitrophenol for opto-electronic applications. J. Mater. Sci. (2016). Google Scholar
  70. 70.
    W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Progr. Phys. 16, 62 (1953)CrossRefGoogle Scholar
  71. 71.
    L.R. Dalton, Rational design of organic electro-optic materials. J. Phys. 15, 897–934 (2003)Google Scholar
  72. 72.
    M. Anis, S.S. Hussaini, M.D. Shirsat, G.G. Muley, Mater. Sci. Poland 34, 548–554 (2016)CrossRefGoogle Scholar
  73. 73.
    K.C. Kao, Dielectric Phenomena in Solids (Elsevier Academic Press, San Diego, 2004), pp. 58–59Google Scholar
  74. 74.
    Chirsto Balarew, Rumen Dhulev, Application of the hard and soft acids and bases concept to explain ligand coordination in double salt structures. J. Solid State Chem. 55, 1–6 (1984)CrossRefGoogle Scholar
  75. 75.
    K. Elangovan, A. Senthil, Growth, structural, spectral, thermal, mechanical, electrical, linear and third order nonlinear optical properties of imidazolium hydrogen maleate single crystal for nonlinear optical applications. Mater. Res. Express 6, 065101 (2019)CrossRefGoogle Scholar
  76. 76.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quant. Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  77. 77.
    E.W. Van Stryland, M. Sheik-Bahae, Z-scan Measurements of Optical Nonlinearities, in Characterization Techniques and Tabulations for Organic Nonlinear Materials, ed. by M.G. Kuzyk, C.W. Dirk (Marcel Dekker Inc, New York, 1998), pp. 655–692Google Scholar
  78. 78.
    I. Bhattacharyya, S. Priyadarshi, D. Goswami, Molecular structure-property correlations from optical nonlinearity and thermal-relaxation dynamics. Chem. Phys. Lett. 469, 104–109 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Physics, School of Advanced SciencesVIT ChennaiChennaiIndia

Personalised recommendations