The effect of temperature gradient on interfacial Cu6Sn5 growth during thermal compression bonding

  • Fenglian Sun
  • Zuozhu YinEmail author
  • Mengjiao Guo


The growth of Cu6Sn5 intermetallic compound (IMC) in Cu/Sn/Cu sandwich system is investigated by thermal compression bonding under a temperature gradient of 800 °C/cm at 400 °C on the hot end. The results show that the interfacial Cu6Sn5 layer shows symmetrical growth at both sides at initial stage, which means that the growth of the Cu6Sn5 layer is controlled by chemical potential gradient. The growth rate of interfacial Cu6Sn5 layer will gradually decrease with increasing Cu6Sn5 layer thickness, which means that the effect of chemical potential gradient on the growth of interfacial Cu6Sn5 layer is undermined and the effect of temperature gradient on the growth of interfacial Cu6Sn5 layer is enhanced. This is due to the fact that the Cu atoms migrate from hot end toward cold end during temperature gradient, the growth rate of Cu6Sn5 layer at cold end is faster than that at hot end. The consumption rate of Cu layer is 0.3 μm/s under temperature gradient of 800 °C/cm. By knowing the calculated consumption rate of Cu layer, the Cu layer thickness on SiC power device can be designed when evaluating the reliability of power device during thermal compression bonding.



This work is supported by the National Natural Science Foundation of China (51174069), National High Technology Research and Development Program (863 Program) of China (No. 2015AA033304).


  1. 1.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, C. Raynaud, State of the art of high temperature power electronics. Mater. Sci. Eng. B 176(4), 283–288 (2011)CrossRefGoogle Scholar
  2. 2.
    R. Kisiel, Z. Szczepański, Die-attachment solutions for SiC power devices. Microelectron. Reliab. 49(6), 627–629 (2009)CrossRefGoogle Scholar
  3. 3.
    P.G. Neudeck, R.S. Okojie, L.Y. Chen, in High-Temperature Electronics—A Role for Wide Bandgap Semiconductors?. in IMtc/2002, Proc IEEE Instrum Meas. Technol Conf, 19th, vol. 90, No. 6, pp. 1065–1076Google Scholar
  4. 4.
    D.G. Senesky, Wide bandgap semiconductors for sensing within extreme harsh environments. ECS Trans. 50(6), 233–238 (2013)CrossRefGoogle Scholar
  5. 5.
    K.J. Zeng, R. Stierman, T.C. Chiu, D. Edwards, Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability. J. Appl. Phys. 97(2), 024508 (2005)CrossRefGoogle Scholar
  6. 6.
    Z.X. Zhu, C.C. Li, L.L. Liao, C.K. Liu, C.R. Kao, Au–Sn bonding material for the assembly of power integrated circuit module. J. Alloys Compd. 671, 340–345 (2016)CrossRefGoogle Scholar
  7. 7.
    W. Liu, Y. Wang, Y. Ma, Q. Yu, Y. Huang, Interfacial microstructure evolution and shear behavior of Au–20Sn/(Sn)Cu solder joints bonded at 250 °C. Mater. Sci. Eng. A 651, 626–635 (2016)CrossRefGoogle Scholar
  8. 8.
    M.V. Uvarajan, L.H. Lim, M.H. Goh, F.L. Ng, W.C. Pan, in Temperature Cycling Aging Studies of Zn-Based Solders for High-Temperature Applications. Electronics Packaging and Technology Conference (EPTC) 17th, pp. 1–5Google Scholar
  9. 9.
    A. Morozumi, H. Hokazono, Y. Nishimura, E. Mochizuki, Y. Takahashi, Influence of antimony on reliability of solder joints using Sn–Sb binary alloy for power semiconductor modules. Trans. Jpn. Inst. Electron. Packag 8(1), 8–17 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Dias, T.A. Costa, B.L. Silva, J.E. Spinelli, N. Cheung, A. Garcia, A comparative analysis of microstructural features, tensile properties and wettability of hypoperitectic and peritectic Sn–Sb solder alloys. Microelectron. Reliab. 81, 150–158 (2018)CrossRefGoogle Scholar
  11. 11.
    B.L. Silva, F. Bertelli, M.V. Canté, J.E. Spinelli, N. Cheung, A. Garcia, Solder/substrate interfacial thermal conductance and wetting angles of Bi–Ag solder alloys. J. Mater. Sci. Mater. Electron. 27(2), 1994–2003 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Yin, D. Li, Z. Yao, G. Wang, A. Blackbum, Microstructures and properties of Bi-10Ag high temperature solder doped with Cu element. Microelectron. Reliab. 80, 79–84 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Yin, D. Li, Z. Yao, G. Wang, D. Das, M. Pecht, Effects of Sn addition on the microstructure and properties of Bi–11Ag high-temperature solder. J. Mater. Sci. Mater. Electron. 29(14), 12028–12035 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Zhong, R. An, C. Wang, Z. Zheng, Z.Q. Liu, C.H. Liu, C.F. Li, T.Y. Kim, S. Jin, Low temperature sintering Cu6Sn5 nanoparticles for superplastic and super-uniform high temperature circuit interconnections. Small 11(33), 4097–4103 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Ji, Y. Qiao, M. Li, Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn–0.7Cu solder for high temperature packaging application. Scr. Mater. 110, 19–23 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Liu, S. He, H. Nishikawa, Thermally stable Cu3Sn/Cu composite joint for high-temperature power device. Scr. Mater. 110, 101–104 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Xiao, X. Yang, G. Yuan, Z. Li, X. Shu, Mechanical properties of intermetallic compounds at the Sn–3.0Ag–0.5Cu/Cu joint interface using nanoindentation. Mater. Des. 88, 520–527 (2015)CrossRefGoogle Scholar
  18. 18.
    Z.Z. Yin, F.L. Sun, M.J. Guo, The fast formation of Cu–Sn intermetallic compound in Cu/Sn/Cu system by induction heating process. Mater. Lett. 215, 207–210 (2018)CrossRefGoogle Scholar
  19. 19.
    Z.Z. Yin, F.L. Sun, M.J. Guo, Effect of Sn/Cu thickness ratio on the transformation law of Cu6Sn5 to Cu3Sn in Sn/Cu interface during aging. Mater. Res. Express 5(8), 086503 (2018)CrossRefGoogle Scholar
  20. 20.
    P.F. Yang, Y.S. Lai, S.R. Jian, J. Chen, R.S. Chen, Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples. Mater. Sci. Eng. A 485(1–2), 305–310 (2008)CrossRefGoogle Scholar
  21. 21.
    Z.Z. Yin, F.L. Sun, M.J. Guo, The fast formation of full Cu3Sn solder joints in Cu/Sn/Cu system by thermal gradient bonding. J. Mater. Sci. Mater. Electron. 30(3), 2146–2153 (2019)CrossRefGoogle Scholar
  22. 22.
    W.L. Chiu, C.M. Liu, Y.S. Haung, C. Chen, Formation of nearly void-free Cu3Sn intermetallic joints using nanotwinned Cu metallization. Appl. Phys. Lett. 104(17), 171902 (2014)CrossRefGoogle Scholar
  23. 23.
    H.Y. Chen, C. Chen, Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. J. Mater. Res. 26(8), 983–991 (2011)CrossRefGoogle Scholar
  24. 24.
    C. Chen, H.Y. Hsiao, Y.W. Chang, F. Ouyang, K.N. Tu, Thermomigration in solder joints. Mater. Sci. Eng. R 73(9–10), 85–100 (2012)CrossRefGoogle Scholar
  25. 25.
    F.Y. Ouyang, C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn–3Ag–0.5Cu flip chip solder joints. J. Appl. Phys. 110(12), 123525 (2011)CrossRefGoogle Scholar
  26. 26.
    W.N. Hsu, F.Y. Ouyang, Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Mater. 81, 141–150 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma, W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci. Rep. 5, 13491 (2015)CrossRefGoogle Scholar
  28. 28.
    F.Y. Ouyang, W.C. Jhu, T.C. Chang, Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. J. Alloys Compd. 580, 114–119 (2013)CrossRefGoogle Scholar
  29. 29.
    S.H. Kim, G.T. Park, J.J. Park, Y.B. Park, Effects of annealing, thermomigration, and electromigration on the intermetallic compounds growth kinetics of Cu/Sn-2.5 Ag microbump. J Nanosci Nanotechnol 15(11), 8593–8600 (2015)CrossRefGoogle Scholar
  30. 30.
    W.N. Hsu, F.Y. Ouyang, Effect of Ag3Sn: effective suppression of thermomigration-induced Cu dissolution in micro-scale Pb-free interconnects. Mater. Chem. Phys. 165, 66–71 (2015)CrossRefGoogle Scholar
  31. 31.
    Y.P. Su, C.S. Wu, F.Y. Ouyang, Asymmetrical precipitation of Ag3Sn intermetallic compounds induced by thermomigration of Ag in Pb-Free microbumps during solid-state aging. J. Electron. Mater. 45(1), 30–37 (2016)CrossRefGoogle Scholar
  32. 32.
    F.Y. Ouyang, Y.P. Su, Growth kinetic of Ag3Sn intermetallic compound in micro-scale Pb-free solder alloys under a temperature gradient. J. Alloys Compd. 655, 155–164 (2016)CrossRefGoogle Scholar
  33. 33.
    Y.S. Yang, C.J. Yang, F.Y. Ouyang, Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration. J. Alloys Compd. 674, 331–340 (2016)CrossRefGoogle Scholar
  34. 34.
    I.A. Blech, Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations