Advertisement

Synthesis and electromagnetic wave absorption properties of three-dimensional nano-flower structure of MoS2/polyaniline nanocomposites

  • Dong An
  • Lizhong BaiEmail author
  • Shuaishuai Cheng
  • Zhiyi Zhang
  • Xiaoyuan Duan
  • Zhijian Sun
  • Yaqing LiuEmail author
Article
  • 3 Downloads

Abstract

Three-dimensional nano-flower structure of MoS2/PANI nanocomposites were successfully fabricated via the in situ polymerization method. The best reflection loss could reach − 50.57 dB at 5.04 GHz with the thickness of 5.0 mm and the efficient absorption bandwidth (RL ≤ − 10 dB) was about 2.08 GHz when the mass ratio of MoS2/PANI was 5:5. Additionally, in the case of satisfying effective electromagnetic wave absorption, other two effective and even wider absorption bandwidth could achieve 4.96 GHz (13.04–18.00 GHz) and 3.68 GHz (8.08–11.76 GHz) at the thickness of 2.0 mm and 3.0 mm, respectively. According to the electromagnetic parameters’ analyses, the more multi-interfaces introduced by the construction of such three-dimensional nano-flower structure, the more multi-polarization and reflection could be occurred, the better electromagnetic wave absorption could be achieved. The results indicated that MoS2/PANI nanocomposites were the promising electromagnetic wave absorbing materials.

Notes

References

  1. 1.
    X.J. Zhang, J.Q. Zhu, P.G. Yin et al., Adv. Func. Mater. 28, 1800761 (2018)CrossRefGoogle Scholar
  2. 2.
    B. Wen, M. Cao, M. Lu et al., Adv. Mater. 26, 3357 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Liu, H.B. Zhang, R. Sun et al., Adv. Mater. 29, 1702367 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Yu, X. Lan, C. Wei et al., J. Alloy. Compd. 748, 111 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Umrao, T.K. Gupta, S. Kumar et al., ACS Appl. Mater. Interfaces. 7, 19831 (2015)CrossRefGoogle Scholar
  6. 6.
    H. Chen, Z. Huang, Y. Huang et al., Carbon 124, 506 (2017)CrossRefGoogle Scholar
  7. 7.
    Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Adv. Mater. 25, 1296 (2013)CrossRefGoogle Scholar
  8. 8.
    G. Wang, X. Peng, L. Yu, G. Wan, S. Lin, Y. Qin, J. Mater. Chem. A 3, 2734 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Ma, X. Wang, W. Cao et al., Chem. Eng. J. 339, 487 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Jia, B. Wang, A. Feng, et al., Ceram. Int. 45, 15854 (2019)CrossRefGoogle Scholar
  11. 11.
    Z. Jia, B. Wang, A. Feng, et al., J. Alloys Compd. 799, 216 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Mater. Sci. Eng. C 89, 25 (2018)CrossRefGoogle Scholar
  13. 13.
    G. Wu, Y. Cheng, Z. Yang et al., Chem. Eng. J. 333, 519 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Kong, X. Yin, H. Xu et al., Carbon 145, 61 (2019)CrossRefGoogle Scholar
  15. 15.
    S.S.S. Afghahi, A. Mirzazadeh, M. Jafarian, Y. Atassi, Ceram. Int. 42, 9697 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)CrossRefGoogle Scholar
  17. 17.
    D. Zhang, J. Chai, J. Cheng et al., Appl. Surf. Sci. 462, 872 (2018)CrossRefGoogle Scholar
  18. 18.
    D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8, 1102 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, Nat. Chem. 5, 263 (2013)CrossRefGoogle Scholar
  20. 20.
    B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, ACS Appl. Mater. Interfaces. 7, 12951 (2015)CrossRefGoogle Scholar
  21. 21.
    M.Q. Ning, M.M. Lu, J.-B. Li et al., Nanoscale 7, 15734 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Li, C.Y. Xu, J.Y. Wang, L. Zhen, Sci. Rep. 4, 7186 (2014)CrossRefGoogle Scholar
  23. 23.
    Q. Jia, X. Huang, G. Wang, J. Diao, P. Jiang, J. Phys. Chem. C 120, 10206 (2016)CrossRefGoogle Scholar
  24. 24.
    D. Zhang, Y. Jia, J. Cheng et al., J. Alloy. Compd. 758, 62 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He, ACS Appl. Mater. Interfaces. 7, 26226 (2015)CrossRefGoogle Scholar
  26. 26.
    X.J. Zhang, S. Li, S.W. Wang et al., J. Phys. Chem. C 120, 22019 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Lv, Z. Yang, P.L. Wang et al., Adv. Mater. 30, 1706343 (2018)CrossRefGoogle Scholar
  28. 28.
    P. Zhang, X. Han, L. Kang, R. Qiang, W. Liu, Y. Du, RSC Advances 3, 12694 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Raghu, K.Y. Kumar, S. Rao, T. Aravinda, B. Prasanna, M. Prashanth, Polym. Bull. 75, 4359 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Yang, L. Xia, T. Zhang et al., Chem. Eng. J. 352, 510 (2018)CrossRefGoogle Scholar
  31. 31.
    M.M. Lu, M.S. Cao, Y.-H. Chen et al., ACS Appl. Mater. Interfaces 7, 19408 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Zhao, S. Xu, Z. Du, C. Jiang, X. Huang, ACS Sustain. Chem. Eng. 7, 7183 (2019)Google Scholar
  33. 33.
    P. Xu, X. Han, X. Liu, B. Zhang, C. Wang, X. Wang, Mater. Chem. Phys. 114, 556 (2009)CrossRefGoogle Scholar
  34. 34.
    X. Zhang, G. Ji, W. Liu et al., Nanoscale 7, 12932 (2015)CrossRefGoogle Scholar
  35. 35.
    M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small 14, 1800987 (2018)CrossRefGoogle Scholar
  36. 36.
    M.S. Cao, W.L. Song, Z.L. Hou, B. Wen, J. Yuan, Carbon 48, 788 (2010)CrossRefGoogle Scholar
  37. 37.
    W.Q. Cao, X.X. Wang, J. Yuan, W.Z. Wang, M.-S. Cao, J. Mater. Chem. C 3, 10017 (2015)CrossRefGoogle Scholar
  38. 38.
    B. Zhao, X. Guo, W. Zhao et al., Nano Res. 10, 331 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Zhang, G. Ji, W. Liu et al., J. Mater. Chem. C 4, 1860 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Pan, X. Sun, T. Wang et al., Appl. Surf. Sci. 457, 271 (2018)CrossRefGoogle Scholar
  41. 41.
    W.L. Zhang, D. Jiang, X. Wang, B.N. Hao, Y.D. Liu, J. Liu, J. Phys. Chem. C 121, 4989 (2017)CrossRefGoogle Scholar
  42. 42.
    J. Dai, H. Yang, B. Wen, H. Zhou, L. Wang, Y. Lin, Appl. Surf. Sci. 479, 1226 (2019)CrossRefGoogle Scholar
  43. 43.
    W. Zhang, X. Zhang, H. Wu, H. Yan, S. Qi, J. Alloy. Compd. 751, 34 (2018)CrossRefGoogle Scholar
  44. 44.
    Y. Lin, J. Dong, H. Zong, B. Wen, H. Yang, ACS Sustain. Chem. Eng. 6, 10011 (2018)CrossRefGoogle Scholar
  45. 45.
    W. Qin, T. Chen, L. Pan et al., Electrochim. Acta 153, 55 (2015)CrossRefGoogle Scholar
  46. 46.
    S. Kang, S. Qiao, Z. Hu, J. Yu, Y. Wang, J. Zhu, J. Mater. Sci. 54, 6410 (2019)CrossRefGoogle Scholar
  47. 47.
    T. Wu, Y. Liu, X. Zeng et al., ACS Appl. Mater. Interfaces 8, 7370 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C 3, 7677 (2015)CrossRefGoogle Scholar
  49. 49.
    L. Zhu, X. Zeng, X. Li, B. Yang, R. Yu, J. Magn. Magn. Mater. 426, 114 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shanxi Key Laboratory of Nano-functional Composite MaterialsNorth University of ChinaTaiyuanChina
  2. 2.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations