Advertisement

Enhanced magneto-electric coupling and energy storage analysis in (BiFeO3–BaTiO3)/CoFe2O4 composites

  • Prachi Chaudhary
  • Manish KumarEmail author
  • Samiksha Dabas
  • O. P. ThakurEmail author
Article
  • 3 Downloads

Abstract

Enhanced magneto-electric coupling and energy storage density analysis of solid-state route derived (BiFeO3BaTiO3)/CoFe2O4 composites were investigated for memory application under the variation of the magnetic phase of CoFe2O4. The powder X-ray diffraction data, SEM–EDX, Raman spectroscopy, and FTIR measurements were carried out to investigate the crystalline structure, composite formation and phase purity of all the samples. Magnetic measurements showed very high magnetization values obtained from 0.063 emu/g for 0.7BF–0.3BT to 18.14 emu/g for (0.7BF–0.3BT)/30CF composite near room temperature. The weak but countable maximum ferroelectric polarization (Pmax) was achieved due to the change in the area of the loops with the variation of frequencies from 50 to 200 Hz. The highest value of energy storage density (Ju) and efficiency (η) for (BF–BT)/30CF (Ju = 37.08 mJ/cm3 and η = 89.40%) composite was achieved. The dielectric anomaly near the magnetic transition temperature (Tc ~ 425 °C) and the variation in the maximum polarization values from 4.63 to 6.6 µC/cm2 with respect to the applied magnetic field confirmed the strong evidence of magneto-electric coupling in (BF–BT)/CF composite samples. The highest values of magneto-electric coefficients (α) were achieved 9.039 mV/cm Oe at 600 Oe, 9.039 mV/cm Oe at 1100 Oe and 22.59 mV/cm Oe at 1600 Oe for (BF–BT)/10CF, (BF–BT)/20CF and (BF–BT)/30CF composites respectively.

Notes

Acknowledgements

Authors are grateful to University Science Instrumentation Centre (USIC), University of Delhi, NPL, New Delhi, Central Instrumentation Facility (CIF), Jamia Milia Islamia University, New Delhi and Sophisticated Analytical Instrument Facility (SAIF), IIT, Madras, India for providing their characterization facilities.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)CrossRefGoogle Scholar
  3. 3.
    M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Guo, P. Xiao, R. Wen, Y. Wan, Q. Zheng, D. Shi, K.H. Lam, M. Liu, D. Lin, J. Mater. Chem. C 3, 5811 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Zhuang, L.W. Su, H. Wu, A.A. Bokov, W. Ren, Z.G. Ye, J. Mater. Chem. C 3, 12450 (2015)CrossRefGoogle Scholar
  7. 7.
    N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, RSC Adv. 8, 36939 (2018)CrossRefGoogle Scholar
  8. 8.
    M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95, 8069 (2004)CrossRefGoogle Scholar
  9. 9.
    L.Y. Fetisov, D.A. Burdin, N.A. Ekonomov, D.V. Chashin, J. Zhang, G. Srinivasan, Y.K. Fetisov, J. Phys. D 51, 154003 (2018)CrossRefGoogle Scholar
  10. 10.
    B.Y. Wang, H.T. Wang, S.B. Singh, Y.C. Shao, Y.F. Wang, C.H. Chuang, P.H. Yeh, J.W. Chiou, C.W. Pao, H.M. Tsai, H.J. Lin, J.F. Lee, C.Y. Tsai, W.F. Hsieh, M.-H. Tsai, W.F. Pong, RSC Adv. 3, 7884 (2013)CrossRefGoogle Scholar
  11. 11.
    A. Kumar, I. Rivera, R.S. Katiyar, J.F. Scott, Appl. Phys. Lett. 92, 132913 (2008)CrossRefGoogle Scholar
  12. 12.
    X. Yang, Z. Zhou, T. Nan, Y. Gao, G.M. Yang, M. Liu, N.X. Sun, J. Mater. Chem. C 4, 234 (2016)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2, 61 (2010)CrossRefGoogle Scholar
  14. 14.
    C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900 (2010)CrossRefGoogle Scholar
  15. 15.
    J.F. Scott, NPG Asia Mater. 5, 72 (2013)CrossRefGoogle Scholar
  16. 16.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  17. 17.
    G. Srinivasan, Ann. Rev. Mater. Res. 40, 153 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Fiebig, Th Lottermoser, D. Frohlich, A.V. Goltsev, R.V. Pisarev, Nature 419, 818 (2002)CrossRefGoogle Scholar
  19. 19.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  20. 20.
    D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009)CrossRefGoogle Scholar
  21. 21.
    S.M. Neumayer, N. Browne, A.B. Naden, D. Edwards, D. Mazumdar, N. Bassiri-Gharb, A. Kumar, B.J. Rodriguez, J. Mater. Sci. Mater. Electron. 53, 10231 (2018)Google Scholar
  22. 22.
    C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)CrossRefGoogle Scholar
  23. 23.
    W. Yan, Z.L. Hou, S. Bi, R.B. Cui, M. Tang, J. Mater. Sci. Mater. Electron. 53, 10249 (2018)Google Scholar
  24. 24.
    I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C 15, 4835 (1982)CrossRefGoogle Scholar
  25. 25.
    M. Kumar, S. Shankar, R.K. Kotnala, O.P. Thakur, J. Alloys Compd. 577, 222 (2013)CrossRefGoogle Scholar
  26. 26.
    S.Y. Wang, X. Qiu, J. Gao, Y. Feng, W.N. Su, J.X. Zheng, D.S. Yu, D.J. Li, Appl. Phys. Lett. 98, 152902 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)CrossRefGoogle Scholar
  28. 28.
    T.H. Wang, C.S. Tu, Y. Ding, T.C. Lin, C.S. Ku, W.C. Yang, H.H. Yu, K.T. Wu, Y.D. Yao, H.Y. Lee, Curr. Appl. Phys. 11, S240 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr., J. Rodel, Appl. Phys. Rev. 4, 041305 (2017)CrossRefGoogle Scholar
  30. 30.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbough, S.S. Wong, Nano Lett. 7, 766 (2007)CrossRefGoogle Scholar
  31. 31.
    C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 224103 (2005)CrossRefGoogle Scholar
  32. 32.
    C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  33. 33.
    S.D. Bhame, P.A. Joy, J. Am. Ceram. Soc. 91, 1976 (2008)CrossRefGoogle Scholar
  34. 34.
    B.K. Bammannavar, L.R. Naik, B.K. Chougule, J. Appl. Phys. 104, 064123 (2008)CrossRefGoogle Scholar
  35. 35.
    N. Ranvah, Y. Melikhov, D.C. Jiles, J.E. Snyder, A.J. Moses et al., J. Appl. Phys. 103, 07E506 (2008)CrossRefGoogle Scholar
  36. 36.
    D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, J. Eur. Ceram. Soc. 33, 3023 (2013)CrossRefGoogle Scholar
  37. 37.
    Q. Zhou, C. Zhou, H. Yang, G. Chen, W. Li, H. Wang, J. Am. Ceram. Soc. 95, 3889 (2012)CrossRefGoogle Scholar
  38. 38.
    G. Chen, X. Peng, C. Fu, W. Cai, R. Gao, P. Fan, X. Yi, H. Yang, C. Ji, H. Yong, Ceram. Int. 44, 16880 (2018)CrossRefGoogle Scholar
  39. 39.
    X.H. Liu, Z. Xu, X.Y. Wei, Z.H. Dai, X. Yao, J. Am. Ceram. Soc. 93, 2975 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Kumar, S. Shankar, O.P. Thakur, A.K. Ghosh, J. Mater. Sci. Mater. Electron. 26, 1427 (2014)CrossRefGoogle Scholar
  41. 41.
    M. Kumar, S. Shankar, O.P. Thakur, J. Mater. Sci. Mater. Electron. 25, 888 (2013)CrossRefGoogle Scholar
  42. 42.
    M. Zhang, X. Zhang, X. Qi, Y. Li, L. Bao, Y. Gu, Ceram. Int. 43, 16957 (2007)CrossRefGoogle Scholar
  43. 43.
    P.A. Jha, P.K. Jha, A.K. Jha, R.K. Kotnala, R.K. Dwivedi, J. Alloys Compd. 600, 186 (2014)CrossRefGoogle Scholar
  44. 44.
    M. Tian, L. Zhou, X. Zou, Q. Zheng, L. Luo, N. Jiang, D. Lin, J. Mater. Sci. Mater. Electron. 26, 8840 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Luo, N. Jiang, X. Zou, D. Shi, T. Sun, Q. Zheng, C. Xu, K.H. Lam, D. Lin, Phys. Status Solidi A 9, 2012 (2015)CrossRefGoogle Scholar
  46. 46.
    H. Bouzidi, H. Chaker, M. Es-souni, C. Chaker, H. Khemakhem, J. Alloys Compd. 772, 877 (2019)CrossRefGoogle Scholar
  47. 47.
    B.N. Parida, P.R. Das, R. Padhee, D. Suara, A. Mishra, J. Rout, R.N.P. Choudhary, Mater. Res. Bull. 61, 544 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloys Compd. 750, 507 (2018)CrossRefGoogle Scholar
  49. 49.
    M. Ud, D. Rather, R. Samar, B. Want, J. Alloys Compd. 755, 89 (2018)CrossRefGoogle Scholar
  50. 50.
    Y. Lin, H. Yang, Z. Zhu, Mater. Chem. Phys. 136, 286 (2012)CrossRefGoogle Scholar
  51. 51.
    G.D. Dwivedi, K.F. Tseng, C.L. Chan, P. Shahi, J. Lourembam, B. Chatterjee, A.K. Ghosh, H.D. Yang, S. Chatterjee, Phys. Rev. B 82, 134428 (2010)CrossRefGoogle Scholar
  52. 52.
    S. Shankar, M. Kumar, P. Brijmohan, S. Kumar, O.P. Thakur, A.K. Ghosh, J. Mater. Sci. Mater. Electron. 27, 13259 (2016)CrossRefGoogle Scholar
  53. 53.
    A. Das, S. De, S. Bandyopadhyay, S. Chatterjee, D. Das, J. Alloys Compd. 697, 353 (2017)CrossRefGoogle Scholar
  54. 54.
    S. Agarwal, O.F. Caltun, K. Sreenivas, Solid State Commun. 152, 1951 (2012)CrossRefGoogle Scholar
  55. 55.
    S. Shankar, M. Kumar, V. Tuli, O.P. Thakur, M. Jayasimhadri, J. Mater. Sci. Mater. Electron. 30, 2837 (2018)Google Scholar
  56. 56.
    M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)CrossRefGoogle Scholar
  57. 57.
    V.S. Puli, D.K. Pradhan et al., J. Alloys Compd. 584, 369 (2014)CrossRefGoogle Scholar
  58. 58.
    T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, X. Wei, Mater. Lett. 137, 79 (2014)CrossRefGoogle Scholar
  59. 59.
    M. Rawat, K.L. Yadav, J. Alloys Compd. 597, 188 (2014)CrossRefGoogle Scholar
  60. 60.
    S. Shankar, M. Kumar, A.K. Ghosh, O.P. Thakur, M. Jayasimhadari, J. Alloys Compd. 779, 918 (2019)CrossRefGoogle Scholar
  61. 61.
    H. Yang, G. Zhang, Y. Lin, Mater. Lett. 164, 388 (2016)CrossRefGoogle Scholar
  62. 62.
    X. Liu, W.Z. Xu, X. Wei, Z. Dai, X. Yao, J. Am. Ceram. Soc. 93, 2975 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Analysis and Research Laboratory, Department of PhysicsNSUTNew DelhiIndia
  2. 2.Experimental Research Laboratory, Department of Physics, ARSD CollegeUniversity of DelhiNew DelhiIndia

Personalised recommendations