Advertisement

A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications

  • Honghuo Liang
  • Tao Sun
  • Lang Xu
  • Chaoying Sun
  • Dewei WangEmail author
Article
  • 3 Downloads

Abstract

Porous carbons with ultrahigh specific surface area (> 3000 m2/g) prepared at low KOH/char ratio (e.g. less than 0.5) is of great importance for their future applications, yet this remains a significant challenge due to the uneven dispersion of the activating agent within carbon source. Herein, a universal combination strategy (solid-state reaction at room temperature followed by chemical activation) to prepare ultrahigh surface area porous carbons has been developed. The specific surface area can reach to 3775 m2/g even at a very low KOH/char ratio (0.19), and the morphologies, specific surface and pore size distributions of the products can be simply tuned by the KOH/char ratios. We found the solid-state reaction at room temperature prior to chemical activation is an efficient way to achieve the even dispersion of the activating agent and thus improve the utilization of KOH greatly. As a typical example, the as-obtained EDTA-3 K not only have an ultrahigh specific surface area up to 3614 m2/g, but also deliver a large total pore volume of 2.09 m3/g. Benefited from the ultrahigh specific surface area, hierarchically porous structure and unique morphology, the EDTA-3 K based supercapacitor exhibits excellent capacitive performance in both KOH and Li2SO4 electrolyte. Hence, this study not only exploits a new approach for the synthesis of hierarchically porous carbon materials with ultrahigh specific surface area for electrochemical energy storage applications, but also provides a universal combination strategy to improve the utilization ratio of activating reagent for the producing of porous carbons.

Notes

Acknowledgements

The authors are grateful to the financial supports from the Scientific Research Foundation of the Higher Education Institutions of Ningxia (Grant No. NGY 2017148).

Supplementary material

10854_2019_1733_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3029 kb)

References

  1. 1.
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015)CrossRefGoogle Scholar
  3. 3.
    Z. Wu, L. Li, J.M. Yan, X.B. Zhang, Materials design and system construction for conventional and new-concept supercapacitors. Adv. Sci. 4(6), 1600382 (2017)CrossRefGoogle Scholar
  4. 4.
    M. Areir, Y. Xu, D. Harrison, J. Fyson, A study of 3D printed flexible supercapacitors onto silicone rubber substrates. J. Mater. Sci. 28, 18254–18261 (2017)Google Scholar
  5. 5.
    J.X. Liang, Z.C. Xiao, Y. Gao, X.H. Xu, D.B. Kong, M. Wagner, L.J. Zhi, Ionothermal strategy towards template-free hierarchical porous carbons for supercapacitive energy storage. Carbon 143, 487–493 (2019)CrossRefGoogle Scholar
  6. 6.
    L. Sun, Y.M. Zhou, L. Li, H. Zhou, X.Q. Liu, Q.Y. Zhang, B. Gao, Z.Z. Meng, D. Zhou, Y.L. Ma, Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Appl. Surf. Sci. 467, 382–390 (2019)CrossRefGoogle Scholar
  7. 7.
    F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26, 2219–2251 (2014)CrossRefGoogle Scholar
  8. 8.
    F.X. Wang, X.W. Wu, X.H. Yuan, Z.C. Liu, Y. Zhang, L.J. Fu, Y.S. Zhu, Q.M. Zhou, Y.P. Wu, W. Huang, Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Yang, Y. Tang, X. Huang, L.X. Wang, Q.T. Zhang, Activated porous carbon derived from walnut shells with promising material properties for supercapacitors. J. Mater. Sci. 28, 18637–18645 (2017)Google Scholar
  10. 10.
    K.X. Zou, Y.F. Deng, J.P. Chen, Y.Q. Qian, Y.W. Yang, Y.W. Li, G.H. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Jiao, X.X. Pan, Y.L. Xi, J.Z. Li, J.M. Cao, Q. Guo, W. Han, A facile synthesis of self-assembling reduced graphene oxide/cobalt carbonate hydroxide papers for high-performance supercapacitor applications. J. Mater. Sci. 30, 159–166 (2018)Google Scholar
  12. 12.
    F.Q. Guo, X.C. Jiang, X.L. Li, K.Y. Peng, C.L. Guo, Z.H. Rao, Carbon electrode material from peanut shell by one-step synthesis for high performance supercapacitor. J. Mater. Sci. 30, 159–166 (2018)Google Scholar
  13. 13.
    D. Wang, L. Xu, J. Nai, X. Bai, T. Sun, Morphology-controllable synthesis of nanocarbons and their application in advanced symmetric supercapacitor in ionic liquid electrolyte. Appl. Surf. Sci. 473, 1014–1023 (2019)CrossRefGoogle Scholar
  14. 14.
    A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006)CrossRefGoogle Scholar
  15. 15.
    Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9, 729–762 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 4, 5925–5950 (2016)CrossRefGoogle Scholar
  17. 17.
    C. Prehal, C. Koczwara, N. Jackel, A. Schreiber, M. Burian, H. Amenitsch, M.A. Hartmann, V. Presser, O. Paris, Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2, 16215 (2017)CrossRefGoogle Scholar
  18. 18.
    D.W. Wang, Y.T. Wang, H.W. Liu, W. Xu, L. Xu, Unusual carbon nanomesh constructed by interconnected carbon nanocages for ionic liquid-based supercapacitor with superior rate capability. Chem. Eng. J. 342, 474–483 (2018)CrossRefGoogle Scholar
  19. 19.
    G.S. Fu, Q. Li, J.L. Ye, J.L. Han, J.Q. Wang, L. Zhai, Y.W. Zhu, Hierarchical porous carbon with high nitrogen content derived from plant waste (pomelo peel) for supercapacitor. J. Mater. Sci. 29, 7707–7717 (2018)Google Scholar
  20. 20.
    D. Wang, L. Xu, J. Nai, T. Sun, A versatile Co-Activation strategy towards porous carbon nanosheets for high performance ionic liquid based supercapacitor applications. J. Alloys Compd. 786, 109–117 (2019)CrossRefGoogle Scholar
  21. 21.
    J.C. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Strauss, K. Marsh, M.D. Kowal, M. El-Kady, R.B. Kaner, A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 30, 1704449 (2018)CrossRefGoogle Scholar
  23. 23.
    Z.P. Qiu, Y.S. Wang, X. Bi, T. Zhou, J. Zhou, J.P. Zhao, Z.C. Miao, W.M. Yi, P. Fu, S.P. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. J. Power Sources 376, 82–90 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Pang, W. Zhang, H. Zhang, J. Zhang, H. Zhang, G. Cao, M. Han, Y. Yang, Sustainable nitrogen-containing hierarchical porous carbon spheres derived from sodium lignosulfonate for high-performance supercapacitors. Carbon 132, 280–293 (2018)CrossRefGoogle Scholar
  25. 25.
    M. Sevilla, A.B. Fuertes, A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J. Mater. Chem. A 1, 13738–13741 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)CrossRefGoogle Scholar
  27. 27.
    A.B. Fuertes, M. Sevilla, Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4344–4353 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Luo, Y. Yang, Y. Sun, D. Chen, X. Zhao, D. Zhang, J. Zhang, Highly nanoporous carbons by single-step organic salt carbonization for high-performance supercapacitors. J. Appl. Electrochem. 45, 839–848 (2015)CrossRefGoogle Scholar
  29. 29.
    X.Y. Chen, D.H. Xie, Z.J. Zhang, C. Cen, Tetraphenylborate-derived hierarchically porous carbons as efficient electrode materials for supercapacitors. J. Power Sources 246, 531–539 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Zhu, D. Xu, W. Qian, J. Zhang, F. Yan, Heteroatom-containing porous carbons derived from ionic liquid-doped alkali organic salts for supercapacitors. Small 12, 1935–1944 (2016)CrossRefGoogle Scholar
  31. 31.
    H. Luo, Y. Yang, X. Zhao, J. Zhang, Y. Chen, 3D sponge-like nanoporous carbons via a facile synthesis for high-performance supercapacitors: direct carbonization of tartrate salt. Electrochim. Acta 169, 13–21 (2015)CrossRefGoogle Scholar
  32. 32.
    W. Yang, W. Yang, F. Ding, L. Sang, Z. Ma, G. Shao, Template-free synthesis of ultrathin porous carbon shell with excellent conductivity for high-rate supercapacitors. Carbon 111, 419–427 (2017)CrossRefGoogle Scholar
  33. 33.
    W.W. Kang, B.P. Lin, G.X. Huang, C.X. Zhang, Y.H. Yao, W.T. Hou, B. Xu, B. Xing, Peanut bran derived hierarchical porous carbon for supercapacitor. J. Mater. Sci. 29, 6361–6368 (2018)Google Scholar
  34. 34.
    R. Thangavel, A.G. Kannan, R. Ponraj, V. Thangavel, D.-W. Kim, Y.-S. Lee, High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources 383, 102–109 (2018)CrossRefGoogle Scholar
  35. 35.
    C. Zhang, X. Zhu, M. Cao, M. Li, N. Li, L. Lai, J. Zhu, D. Wei, Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors. ChemSuschem 9, 932–937 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Wang, Y.L. Xu, B. Ding, Z. Chang, X.G. Zhang, Y. Yamauchi, K.C.W. Wu, Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew. Chem. Int. Ed. 57, 2894–2898 (2018)CrossRefGoogle Scholar
  37. 37.
    B.B. Wang, D.H. Li, M.W. Tang, H.B. Ma, Y.G. Gui, X. Tian, F.Y. Quan, X.Q. Song, Y.Z. Xia, Alginate-based hierarchical porous carbon aerogel for high-performance supercapacitors. J. Alloys Compd 749, 517–522 (2018)CrossRefGoogle Scholar
  38. 38.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1291 (2007)CrossRefGoogle Scholar
  39. 39.
    J.G. Wang, H. Liu, H. Sun, W. Hua, H. Wang, X. Liu, B. Wei, One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 127, 85–92 (2018)CrossRefGoogle Scholar
  40. 40.
    A.C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos. Trans. Roy. Soc. Series A 362, 2477–2512 (2004)CrossRefGoogle Scholar
  41. 41.
    D.W. Wang, S.J. Liu, G.L. Fang, G.H. Geng, J.F. Ma, From trash to treasure: direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte. Electrochim. Acta 216, 405–411 (2016)CrossRefGoogle Scholar
  42. 42.
    X.Y. Xie, X.J. He, H.F. Zhang, F. Wei, N. Xiao, J.S. Qiu, Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J. 350, 49–56 (2018)CrossRefGoogle Scholar
  43. 43.
    Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang, H. Peng, Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 115, 5159–5223 (2015)CrossRefGoogle Scholar
  44. 44.
    M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)CrossRefGoogle Scholar
  45. 45.
    H. Xu, C.K. Wu, X.J. Wei, S.Y. Gao, Hierarchically porous carbon materials with controllable proportion of micropore area by dual-activator synthesis for high-performance supercapacitors. J. Mater. Chem. A 6, 15340–15347 (2018)CrossRefGoogle Scholar
  46. 46.
    D.W. Wang, S.J. Liu, L. Jiao, G.L. Fang, G.H. Geng, J.F. Ma, Unconventional mesopore carbon nanomesh prepared through explosione-assisted activation approach: a robust electrode material for ultrafast organic electrolyte supercapacitors. Carbon 119, 30–39 (2017)CrossRefGoogle Scholar
  47. 47.
    R.Y. Yan, M. Antonietti, M. Oschatz, Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors. Adv. Energy. Mater. 8, 1800026 (2018)CrossRefGoogle Scholar
  48. 48.
    J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006)CrossRefGoogle Scholar
  49. 49.
    D.W. Wang, G.L. Fang, T. Xue, J.F. Ma, G.H. Geng, A melt route for the synthesis of activated carbon derived from carton box for high performance symmetric supercapacitor applications. J. Power Sources 307, 401–409 (2016)CrossRefGoogle Scholar
  50. 50.
    D.W. Wang, J.W. Nai, H. Li, L. Xu, Y.T. Wang, A robust strategy for the general synthesis of hierarchical carbons constructed by nanosheets and their application in high performance supercapacitor in ionic liquid electrolyte. Carbon 141, 40–49 (2019)CrossRefGoogle Scholar
  51. 51.
    J.E. Zuliani, S. Tong, C.Q. Jia, D.W. Kirk, Contribution of surface oxygen groups to the measured capacitance of porous carbon supercapacitors. J. Power Sources 395, 271–279 (2018)CrossRefGoogle Scholar
  52. 52.
    C. Young, J.J. Lin, J. Wang, B. Ding, X.G. Zhang, S.M. Alshehri, T. Ahamad, R.R. Salunkhe, S.A. Hossain, J.H. Khan, Y. Ide, J. Kim, J. Henzie, K.C.W. Wu, N. Kobayashi, Y. Yamauchi, Significant effect of pore sizes on energy storage in nanoporous carbon supercapacitors. Chem. Eur. J. 24, 6127–6132 (2018)CrossRefGoogle Scholar
  53. 53.
    J. Zhao, Y.F. Jiang, H. Fan, M. Liu, O. Zhuo, X.Z. Wang, Q. Wu, L.J. Yang, Y.W. Ma, Z. Hu, Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship. Adv. Mater. 29, 1604569 (2017)CrossRefGoogle Scholar
  54. 54.
    K. Fic, G. Lota, M. Meller, E. Frackowiak, Novel insight into neutral medium as electrolyte for high-voltage supercapacitors. Energy Environ. Sci. 5, 5842–5850 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringNorth Minzu UniversityYinchuanPeople’s Republic of China

Personalised recommendations