Electric-field assisted spray technique for controlled pore filling of nanostructured films: device applications

  • Tauheed Mohammad
  • P. S. Chandra Sekhar
  • Charu DwivediEmail author
  • Viresh Dutta


A novel pore-filling system was prepared using spray as the key-technique, for solar cells and various other applications. High performance in perovskite, dye-sensitized and eta cells is often achieved using metal oxide layers or their mesoporous analogues. One dimensional scaffold materials such as nanorods or nanotubes are also employed in order to improve charge collection. Herein, we introduce a method to more efficiently fill the pores in the most common nanostructure architecture namely mesoporous, nanorods or nanotubes. The method employs the use of spray technique with applied DC voltage (through two different voltage supplies) as the cost-effective technology for time efficient pore filling. SnS nanoparticles and N719 dye have been pore-filled onto a previously deposited ZnO nanorods and mesoporous TiO2 film, respectively, using the novel setup. Scanning electron microscopy images revealed an improved pore-filling, the complementary enhancement of ~ 24% in the DSSC efficiency and ~ 16% and 7% in terms of current density and fill factor, respectively has been found in comparison to the reference standard device. It is attributed to an increase in the concentration of dye molecules into the pores of TiO2 nanostructures due to better dye loading and hence observed an improvement in light absorption, electron transportation and charge collection. This pioneer pore filling technique exponentially reduced the dye loading time duration from overnight immersion of photo anodes in dye solution to 15–20 min.



Tauheed Mohammad sincerely thanks to the University Grant Commission (UGC), India for providing a scholarship under the Maulana Azad National Fellowship (MANF) programme and Govt. of India for awarding Merit Cum Means fellowship to pursue professional & technical courses. One of the other author Charu Dwivedi is thankful to Department of Science and Technology (DST), New Delhi, India for support through DST-WOS-A project. Authors want to thanks to Ms. Sapna Mudgal for her help in this work and NRF-CRF, IIT Delhi for providing the necessary characterization techniques.


  1. 1.
    M.I. Hoffert, K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner, J.S. Lewis, H.D. Lightfoot, W. Manheimer, J.C. Mankins, M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, T.M.L. Wigley, Science 298, 981 (2002)CrossRefGoogle Scholar
  2. 2.
    X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500–506 (2009)CrossRefGoogle Scholar
  3. 3.
    X. Ji, L.F. Nazar, J. Mater. Chem. 20, 9821–9826 (2010)CrossRefGoogle Scholar
  4. 4.
    C. Weinberger, S. Ren, M. Hartmann, T. Wagner, D.Ş. Karaman, J.M. Rosenholm, M. Tiemann, A.C.S. Appl, Nano Mater. 1, 455–462 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Yamaguchi, H. Zhou, S. Nakazawa, N. Hara, Adv. Mater. 19, 592–596 (2007)CrossRefGoogle Scholar
  6. 6.
    A. Belaidi, T. Dittrich, D. Kieven, J. Tornow, K. Schwarzburg, M. Lux-Steiner, Phys. Status Solidi Rapid Res. Lett. 2(4), 172 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Grӓtzel, Photochem. Photobiol. A 164, 3 (2004)CrossRefGoogle Scholar
  8. 8.
    K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, Gr€atzel, M. Nat. Mater. 2, 402 (2003)CrossRefGoogle Scholar
  10. 10.
    M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro, Y. Takaoka, Solid State Ionics 89, 263 (1996)CrossRefGoogle Scholar
  11. 11.
    J.N. de Freitas, A.F. Nogueira, M.A. De Paoli, J. Mater. Chem. 19, 5279 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, N. Pellet, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, 11% efficiency solid-state dye-sensitized solar cells with copper (II/I) hole transport materials. Nat. Commun. 8, 15390 (2017)CrossRefGoogle Scholar
  13. 13.
    X.H. Lu, Y.Z. Zheng, S.Q. Bi, Y. Wang, X. Tao, L. Dai, J.F. Chen, Multidimensional ZnO architecture for dye sensitized solar cells with high efficiency up to 735%. Adv. Energy Mater 4(9), 1301802 (2014)CrossRefGoogle Scholar
  14. 14.
    G.K. Mor, J. Basham, M. Paulose, S. Kim, O.K. Varghese, A. Vaish, S. Yoriya, C.A. Grimes, High-efficiency Forster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett. 10(7), 2387–2394 (2010)CrossRefGoogle Scholar
  15. 15.
    Q. Miao, L. Wu, J. Cui, M. Huang, T. Ma, A New type of dye-sensitized solar cell with a multilayered photoanode prepared by a film-transfer technique. Adv. Mater. 23(24), 2764–2768 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Nejati, K.K. Lau, Pore filling of nanostructured electrodes in dye sensitized solar cells by initiated chemical vapor deposition. Nano Lett. 11(2), 419–423 (2010)CrossRefGoogle Scholar
  17. 17.
    S.K. Swami, N. Chaturvedi, A. Kumar, V. Dutta, Prog. Photovoltaics Res. Appl. 24, 78 (2015)Google Scholar
  18. 18.
    H.J. Snaith, R. Humphry-Baker, P. Chen, I. Cesar, S.M. Zakeeruddin, M. Gratzel, Nanotechnology 19, 424003 (2008)CrossRefGoogle Scholar
  19. 19.
    Firoz Alam, Viresh Dutta, Tin sulfide (SnS) nanostructured films deposited by continuous spray pyrolysis (CoSP) technique for dye-sensitized solar cells applications. Appl. Surf. Sci. 358, 491–497 (2015)CrossRefGoogle Scholar
  20. 20.
    C. Dwivedi, V. Dutta, Adv. Nat. Sci. Nanosci. Nanotechnol. 3, 015011 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Longo, J. Freitas, M.A. de Paoli, Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. J. Photochem. Photobiol. A Chem. 159, 33–39 (2003)CrossRefGoogle Scholar
  22. 22.
    M.C. Bernard, H. Cachet, P. Falaras, A. Hugot-Le Goff, M. Kalbac, I. Lukes, N.T. Oanh, T. Stergiopoulos, I. Arabatzis, Sensitization of TiO2 by polypyridine dyes: Role of the electron donor. J Electrochem Soc. 150, E155–E164 (2003)CrossRefGoogle Scholar
  23. 23.
    L.Y. Lin, M.H. Yeh, C.P. Lee, C.Y. Chou, K.C. Ho, Flexible dye-sensitized solar cells with one-dimensional ZnO nanorods as electron collection centers in photoanodes. Electrochim. Acta 88, 421–428 (2013)CrossRefGoogle Scholar
  24. 24.
    P.S. Chandrashekhar, P.K. Parashar, S.K. Swami, V. Dutta, V.K. Komarala, Phys. Chem. Chem. Phys. 20, 9651 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tauheed Mohammad
    • 1
  • P. S. Chandra Sekhar
    • 1
  • Charu Dwivedi
    • 1
    Email author
  • Viresh Dutta
    • 1
  1. 1.Photovoltaic Laboratory, Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations