Ultrathin structural BiOI with surface oxygen vacancies for improved photocatalytic degradation of organic pollutants

  • Yang Bai
  • Kai Zhang
  • Xian ShiEmail author
  • Xing Li


Ultrathin BiOI nanosheets with surface oxygen vacancies have been synthesized in situ and evaluated as improved bismuth oxyhalide photocatalysts for the degradation of organic pollutants. Environmental remediation, in particular the degradation of phenol and bisphenol A is of interest due to the toxicity and persistent nature of these compounds. The efficient photocatalytic activity of ultrathin structural BiOI is the result of enhanced carrier photocatalysis. This has been determined by several experiments, such as trapping experiments, electron spin resonance and reactive oxygen species quantification experiments. The durability and stability of the catalysts has also been verified by cyclic experiments. These bismuth oxyhalide photocatalysts shows promise for the efficient and sustainable decomposition of persistent organic pollutants.



This work was supported by the National Natural Science Foundation of China (Nos. 51502146, 51702270, 21671113), the PetroChina Innovation Foundation (No. 2018D-5007-0604), the Open Fund (201601) of the State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University), and the Open Fund (PEBM201702) of the Key Laboratory for Photonic and Electric Bandgap Materials, Ministry of Education (Harbin Normal University).

Supplementary material

10854_2019_1710_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1138 kb)


  1. 1.
    M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44, 2997–3027 (2010)CrossRefGoogle Scholar
  2. 2.
    J. Bae, I. Baek, H. Choi, Efficacy of piezoelectric electrospun nanofiber membrane for water treatment. Chem. Eng. J. 307, 670–678 (2017)CrossRefGoogle Scholar
  3. 3.
    R. Yang, H. Li, M. Huang, H. Yang, A. Li, A review on chitosan-based flocculants and their applications in water treatment. Water Res. 95, 59–89 (2016)CrossRefGoogle Scholar
  4. 4.
    H. Li, H. Yu, X. Quan, S. Chen, Y. Zhang, Uncovering the key role of Fermi level of electron mediator in Z-scheme photocatalyst by detecting charge transfer process of WO3-metal-g-C3N4 (metal = Cu, Ag, Au). ACS Appl. Mater. Interfaces 8, 2111–2119 (2016)CrossRefGoogle Scholar
  5. 5.
    L.M.C. Cortés, D.B. Hernández-Uresti, S. Obregón, S. Mejía-Rosales, Synthesis and characterization of CaBiVMoO8 as a novel visible-light-driven photocatalyst. Mater. Lett. 189, 164–167 (2017)CrossRefGoogle Scholar
  6. 6.
    M. Auffan, M. Pedeutour, J. Rose, A. Masion, F. Ziarelli, D. Borschneck, C. Chaneac, C. Botta, P. Chaurand, J. Labille, Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ. Sci. Technol. 44, 2689–2694 (2017)CrossRefGoogle Scholar
  7. 7.
    H. Zhang, R. Zong, J. Zhao, Y. Zhu, Dramatic visible photocatalytic degradation performances due to synergetic effect of TiO2 with PANI. Environ. Sci. Technol. 42, 3803–3807 (2008)CrossRefGoogle Scholar
  8. 8.
    C.F. Lin, C.H. Wu, Z.N. Onn, Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 systems. J. Hazard. Mater. 154, 1033–1039 (2008)CrossRefGoogle Scholar
  9. 9.
    M. Shang, W. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J. Hazard. Mater. 167, 803–809 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, Bismuth-rich Bi4O5X2 (X = Br, and I) nanosheets with dominant 101 facets exposure for photocatalytic H2 evolution. Chem. Eng. J. 304, 454–460 (2016)CrossRefGoogle Scholar
  11. 11.
    H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8, 1986–1993 (2016)CrossRefGoogle Scholar
  12. 12.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 68, 125–129 (2006)CrossRefGoogle Scholar
  13. 13.
    L. Hong, S. Yun, C. Zhen, Z. Jin, W. Yong, Graphene sheets grafted three-dimensional BiOBr0.2I0.8 microspheres with excellent photocatalytic activity under visible light. J. Hazard. Mater. 266, 75–83 (2014)CrossRefGoogle Scholar
  14. 14.
    Y. Bai, L. Ye, T. Chen, P. Wang, L. Wang, X. Shi, P. Wong, Synthesis of hierarchical bismuth-rich Bi4O5BrxI2-x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr(VI) reduction under visible light. Appl. Catal. B 203, 633–640 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Yang, L. Ye, W. Li, S. Xian, P. Wang, B. Wei, P.K. Wong, g-C3N4/Bi4O5I2 heterojunction with I3−/I redox mediator for enhanced photocatalytic CO2 conversion. Appl. Catal. B 194, 98–104 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Lei, G. Wang, P. Guo, H. Song, The Ag-BiOBrxI1-x composite photocatalyst: preparation, characterization and their novel pollutants removal property. Appl. Surf. Sci. 279, 374–379 (2013)CrossRefGoogle Scholar
  17. 17.
    W. Jiang, X. Chen, C. Li, Y. Qi, X. Qi, J. Ren, B. Yuan, N. Bu, R. Zhou, Z. Jing, Hydrothermal synthesis of carbon spheres-BiOI/BiOIO3 heterojunctions for photocatalytic removal of gaseous Hg 0 under visible light. Chem. Eng. J. 304, 533–543 (2016)CrossRefGoogle Scholar
  18. 18.
    X. Zhang, L. Zhang, Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J. Phys. Chem. C 11442, 18198–18206 (2010)CrossRefGoogle Scholar
  19. 19.
    X. Shi, P. Wang, L. Wang, Y. Bai, H. Xie, Y. Zhou, L. Ye, Change in photocatalytic NO removal mechanisms of ultrathin BiOBr/BiOI via NO3− adsorption. Appl. Catal. B 243, 322–329 (2019)CrossRefGoogle Scholar
  20. 20.
    M. Mews, L. Korte, B. Rech, Oxygen vacancies in tungsten oxide and their influence on tungsten oxide/silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 77–83 (2016)CrossRefGoogle Scholar
  21. 21.
    J. Liu, J. Ke, D. Li, H. Sun, P. Liang, X. Duan, W. Tian, M.O. Tadã, S. Liu, S. Wang, Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9, 11678–11688 (2017)CrossRefGoogle Scholar
  22. 22.
    K.M. Alam, P.K. Kumar, P. Thakur, U.K. Zeng, S. Cui, K.S. Karthik, Enhanced charge separation in g-C3N4–BiOI heterostructures for visible light driven photoelectrochemical water splitting. Nanoscale Adv. 1, 1460–1471 (2019)CrossRefGoogle Scholar
  23. 23.
    P. Kumar, R. Boukherroub, K. Shankar, Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. J. Mater. Chem. A 6, 12876–12931 (2018)CrossRefGoogle Scholar
  24. 24.
    A.M. Ganose, M. Cuff, K.T. Butler, A. Walsh, D.O. Scanlon, Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem. Mater. 28(7), 1980–1984 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6, 10224–10234 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Bai, X. Shi, P. Wang, L. Wnag, K. Zhang, Y. Zhou, H. Xie, J. Wang, L. Ye, BiOBrxI1−x/BiOBr heterostructure engineering for efficient molecular oxygen activation. Chem. Eng. J. 365, 34–42 (2019)CrossRefGoogle Scholar
  27. 27.
    X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013)CrossRefGoogle Scholar
  28. 28.
    W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4, 36959–36966 (2014)CrossRefGoogle Scholar
  29. 29.
    Z. Changqing, L. Changli, Z. Maojun, D. Jean-Jacques, Plasma-induced oxygen vacancies in ultrathin hematite nanoflakes promoting photoelectrochemical water oxidation. ACS Appl. Mater. Interfaces 7, 22355–22363 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Liu, X. Chen, Q. Xia, L. Tian, X. Chen, Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 5, 77423–77428 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Xie, D. Hu, L. Liu, P. Zhou, J. Xu, Y. Ling, Oxygen vacancy induced fast lithium storage and efficient organics photodegradation over ultrathin TiO2 nanolayers grafted graphene sheets. J. Hazard. Mater. 318, 551–560 (2016)CrossRefGoogle Scholar
  32. 32.
    H. Huang, X. Ke, H. Ying, T. Zhang, D. Fan, D. Xin, Y. Zhang, In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI 001 active facets for robust and nonselective photocatalysis. Appl. Catal. B 199, 75–86 (2016)CrossRefGoogle Scholar
  33. 33.
    W. Fan, H. Li, F. Zhao, X. Xiao, Y. Huang, H. Ji, Y. Tong, Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes. Chem. Commun. 52, 5316–5319 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Ye, X. Jin, C. Liu, C. Ding, H. Xie, K.H. Chu, P.K. Wong, Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B 187, 281–290 (2016)CrossRefGoogle Scholar
  35. 35.
    M. Guan, C. Xiao, J. Zhang, S. Fan, R. An, Q. Cheng, J. Xie, M. Zhou, B. Ye, Y. Xie, Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 135, 10411–10417 (2013)CrossRefGoogle Scholar
  36. 36.
    M. Yan, L. Wen, Z. Wang, D. Cao, Y. Fang, L. Yong, Building of anti-restack 3D BiOCl hierarchitecture by ultrathin nanosheets towards enhanced photocatalytic activity. Appl. Catal. B 176–177, 331–337 (2015)Google Scholar
  37. 37.
    F. Dong, Y. Sun, M. Fu, Z. Wu, S.C. Lee, Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J. Hazard. Mater. 219–220, 26–34 (2012)CrossRefGoogle Scholar
  38. 38.
    X. Wang, S. Yang, H. Li, W. Zhao, C. Sun, H. He, High adsorption and efficient visible-light-photodegradation for cationic Rhodamine B with microspheric BiOI photocatalyst. RSC Adv. 4, 42530–42537 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Ye, W. Hui, X. Jin, Y. Su, D. Wang, H. Xie, X. Liu, X. Liu, Synthesis of olive-green few-layered BiOI for efficient photoreduction of CO2 into solar fuels under visible/near-infrared light. Sol. Energy Mater. Sol. Cells 144, 732–739 (2016)CrossRefGoogle Scholar
  40. 40.
    A. Moya, A. Cherevan, S. Marchesan, P. Gebhardt, M. Prato, D. Eder, J.J. Vilatela, Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2 hybrids. Appl. Catal. B 179, 574–582 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Nosaka, A.Y. Nosaka, Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017)CrossRefGoogle Scholar
  42. 42.
    H. Li, F. Qin, Z. Yang, X. Cui, J. Wang, L. Zhang, New reaction pathway induced by plasmon for selective benzyl alcohol oxidation on BiOCl possessing oxygen vacancies. J. Am. Chem. Soc. 139, 3513–3521 (2017)CrossRefGoogle Scholar
  43. 43.
    X. Zhang, H. Tian, X. Wang, G. Xue, Z. Tian, J. Zhang, S. Yuan, Y. Tao, Z. Zou, The role of oxygen vacancy-Ti3+ states on TiO2 nanotubes’ surface in dye-sensitized solar cells. Mater. Lett. 100, 51–53 (2013)CrossRefGoogle Scholar
  44. 44.
    L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, The 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 47, 6951–6953 (2011)CrossRefGoogle Scholar
  45. 45.
    C. Bi, C. Jing, H. Lina, Y. Wang, S. Chen, Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Appl. Catal. B 195, 132–140 (2016)CrossRefGoogle Scholar
  46. 46.
    F. Chen, H. Huang, C. Zeng, X. Du, Y. Zhang, Achieving enhanced UV and visible light photocatalytic activity for ternary Ag/AgBr/BiOIO3: decomposition for diverse industrial contaminants with distinct mechanisms and complete mineralization ability. ACS Sustain. Chem. Eng. 5, 7777–7791 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas EngineeringSouthwest Petroleum UniversityChengduChina

Personalised recommendations