A comparative study of the isoelectronic Cd and Hg substitution in EDTA-capped ZnS nanocrystals

  • Sh. Tabatabai YazdiEmail author
  • P. Iranmanesh
  • N. Khorasanipour
  • S. Saeednia


In this research, the surface capped pure ZnS nanoparticles, as well as the Cd- and Hg-doped ones were synthesized via a green ultrasonic-assisted co-precipitation route. The products were characterized by X-ray diffraction, scanning and transmission electron microscopies, Fourier transform infrared, UV–Vis and photoluminescence spectroscopies. The results showed that the synthesized spherical-like nanoparticles are single-phased and well-dispersed with diameters of about 3 nm. They were crystallized in a cubic zincblende structure whose lattice constants increase on doping due to the larger ionic radii of the dopants. The Cd/Hg substitution results in slightly less microstrain and so rather smaller particles. The studied nanoparticles are direct band gap materials whose band gap values vary with Cd/Hg doping from 4.31 eV for ZnS to 3.94/4.40 eV as a result of the competition between the quantum size effect and the composition effect. The effect of the isoelectronic Cd and Hg doping is also revealed as the weakening of the blue photoluminescence band around 430 nm originated from the defect states in ZnS matrix, and the appearance of a red excitonic emission at 640 nm. It was found that in these nanoparticles being smaller than Bohr dimension, the particle size is a determinative parameter for governing the efficiency of the radiative emissions.



The authors gratefully acknowledge the supports from Vali-e-Asr University of Rafsanjan.


  1. 1.
    A.D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001)CrossRefGoogle Scholar
  2. 2.
    W.L. Davidson, X-ray diffraction evidence for ZnS formation in zinc activated rubber vulcanizates. Phys. Rev. 74, 116–117 (1948)CrossRefGoogle Scholar
  3. 3.
    W. Liu, Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air-stable single-source molecular precursor in air. Mater. Lett. 60, 551–554 (2006)CrossRefGoogle Scholar
  4. 4.
    P. Chansri, S. Arunrungrusmi, T. Yuji, N. Mungkung, An analysis of ZnS: Cu phosphor layer thickness influence on electroluminescence device performances (J. Photoenergy, Int, 2017). Google Scholar
  5. 5.
    R.H. Castillo, M. Acosta, I. Riech, G. Santana-Rodríguez, J. Mendez-Gamboa, C. Acosta, M. Zambrano, Study of ZnS/CdS structures for solar cells applications. Optik 148, 95–100 (2017)CrossRefGoogle Scholar
  6. 6.
    M.D. Regulacio, K.Y. Win, S.L. Lo, S.-Y. Zhang, X. Zhang, S. Wang, M.-Y. Han, Y. Zhen, Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale 5, 2322–2327 (2013)CrossRefGoogle Scholar
  7. 7.
    H.S. Choi, Y. Kim, J.C. Park, M.H. Oh, D.Y. Jeon, Y.S. Nam, Highly luminescent, off-stoichiometric CuxInyS2/ZnS quantum dots for near-infrared fluorescence bio-imaging. RSC Adv. 5, 43449–43455 (2015)CrossRefGoogle Scholar
  8. 8.
    S. Sahare, S.J. Dhoble, P. Singh, M. Ramrakhiani, Fabrication of ZnS: cu/PVA nanocomposite electroluminescence devices for flat panel displays. Adv. Mater. Lett. 4, 169–173 (2013)CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, K. Wang, K. Zheng, S. Deng, N. Xu, J. Chen, A flat panel photodetector formed by a ZnS photoconductor and ZnO nanowire field emitters achieving high responsivity from ultraviolet to visible light for indirect-conversion X-Ray imaging. J. Lightwave Technol. 36, 5010–5015 (2018)CrossRefGoogle Scholar
  10. 10.
    H.R. Azimi, M. Ghoranneviss, S.M. Elahi, R. Yousefi, Photovoltaic and UV detector applications of ZnS/rGO nanocomposites synthesized by a green Method. Ceram. Int. 42, 14094–14099 (2016)CrossRefGoogle Scholar
  11. 11.
    A.F. Mohammed, W.R. Salah, Synthesis of ZnS quantum dots for QDs-LED hybrid device with different cathode materials (IOP Publishing Ltd, Bristol, 2018)CrossRefGoogle Scholar
  12. 12.
    S. Vasilyev, I. Moskalev, V. Smolski, J. Peppers, M. Mirov, V. Fedorov, D. Martyshkin, S. Mirov, V. Gapontsev, Octave-spanning Cr:ZnS femtosecond laser with intrinsic nonlinear interferometry. Optica 6, 126–127 (2019)CrossRefGoogle Scholar
  13. 13.
    D. Okazaki, H. Arai, A. Anisimov, E.I. Kauppinen, S. Chiashi, S. Maruyama, N. Saito, S. Ashihara, Self-starting mode-locked Cr:ZnS laser using single-walled carbon nanotubes with resonant absorption at 2.4 μm. Opt Lett 44(7), 1750–1753 (2019)CrossRefGoogle Scholar
  14. 14.
    H.Y. Huang, C.H. Chuang, C.K. Shu, Y.C. Pan, W.H. Lee, W.K. Chen, W.H. Chen, M.C. Lee, Photoluminescence and photoluminescence excitation studies of as-grown and P-implanted GaN: on the nature of yellow luminescence. Appl. Phys. Lett. 80, 3349–3351 (2002)CrossRefGoogle Scholar
  15. 15.
    S.L. Chen, W.M. Chen, I.A. Buyanova, Magneto-optical properties and recombination dynamics of isoelectronic boundexcitons in ZnO. AIP Conf. Proc. 1583, 186–189 (2014)CrossRefGoogle Scholar
  16. 16.
    R. Intartaglia, T. Taliercio, P. Valvin, B. Gil, T. Bretagnon, P. Lefebvre, Isoelectronic traps in heavily doped GaAs:(In, N). Phys. Rev. B 68(23), 235202 (2003)CrossRefGoogle Scholar
  17. 17.
    J.J. Hopfield, D.G. Thomas, R.T. Lynch, Isoelectronic donors and acceptors. Phys. Rev. Lett. 17, 312–315 (1966)CrossRefGoogle Scholar
  18. 18.
    Th Agne, M. Dietrich, J. Hamann, S. Lany, H. Wolf, Th Wichert, ISOLDE collaboration, optical properties of the isoelectronic trap Hg in ZnO. Appl. Phys. Lett. 82, 3448–3450 (2003)CrossRefGoogle Scholar
  19. 19.
    P. Iranmanesh, S. Saeednia, N. Khorasanipoor, Tunable properties of cadmium substituted ZnS nanocrystals. Mater. Sci. Semicon. Proc. 68, 193–198 (2017)CrossRefGoogle Scholar
  20. 20.
    Th Agne, M. Dietrich, J. Hamann, S. Lany, H. Wolf, Th Wichert, ISOLDE collaboration, optical properties of the isoelectronic trap Hg in ZnO. Appl. Phys. Lett. 82, 3448–3450 (2003)CrossRefGoogle Scholar
  21. 21.
    S.M. Zhou, Near UV photoluminescence of Hg-doped GaN nanowires. Physica E 33, 394–397 (2006)CrossRefGoogle Scholar
  22. 22.
    A. Pradhan, R.C. Jones, D. Caruntu, C.J. O’Connor, M.A. Tarr, Gold-magnetite nanocomposite materials formed via sonochemical methods. Ultrason. Sonochem. 15, 891–897 (2008)CrossRefGoogle Scholar
  23. 23.
    U. Waggon, Optical properties of semiconductor quantum dots (Springer-Verlag, Berlin, 1996), p. 250Google Scholar
  24. 24.
    J.-W. Lee, S.-M. Lee, Y.-D. Huh, C.-S. Hwang, EDTA surface capped water-dispersible ZnSe and ZnS: Mn nanocrystals. Bull. Korean Chem. Soc. 31, 1997–2002 (2010)CrossRefGoogle Scholar
  25. 25.
    B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, New York, 2001)Google Scholar
  26. 26.
    J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978)CrossRefGoogle Scholar
  27. 27.
    A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1-xO nanoparticles prepared by sol-gel technique. CrystEngComm 20, 1716–1730 (2018)CrossRefGoogle Scholar
  28. 28.
    N.W. Ashcroft, N.D. Mermin, Solid state physics (Holt, Rinehart and Winston, New York, 1976), p. 628Google Scholar
  29. 29.
    Börnstein L (1987) Numerical data and functional relationships in science and technology. New Series. Group III: crystal and solid state physics. Vol. 22: semiconductors. Subvolume a: Intrinsic properties of group IV elements and III‐V, II‐VI and I‐VII compounds. Madelun O (ed), Springer, Berlin, p 168Google Scholar
  30. 30.
    C.A. Klein, R.N. Donadio, Infrared-active phonons in cubic zinc sulfide. J. Appl. Phys. 51, 797–800 (1980)CrossRefGoogle Scholar
  31. 31.
    Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts. 3rd (ed). John Wiley & Sons Ltd, New Jersey, p 95–97Google Scholar
  32. 32.
    P.R. Collins, W.J. Fredericks, Note on the absorption spectrum of KBr: Cd 2+. Phys. Stat. Sol. (b) 134, K67–K70 (1986)CrossRefGoogle Scholar
  33. 33.
    L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, T. Khalyavka, A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO2 doped with transition metal cations. J. Solid State Chem. 198, 511–519 (2013)CrossRefGoogle Scholar
  34. 34.
    D.C. Onwudiwe, P.A. Ajibade, Zn(II), Cd(II) and Hg(II) complexes of N-methyl-N-phenyl dithiocarbamate as single-source precursors for the synthesis of metal sulfide nanoparticles. Mater. Lett. 65, 3258–3261 (2011)CrossRefGoogle Scholar
  35. 35.
    U.S. Senapati, D. Sarkar, Synthesis and characterization of biopolymer protected zinc sulphide nanoparticles. Superlattice. Microst. 85, 722–733 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bul. 3, 37–46 (1968)CrossRefGoogle Scholar
  37. 37.
    A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A 233(1–4), 307–319 (2018)Google Scholar
  38. 38.
    G. Murugadoss, Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology 11, 566–573 (2013)CrossRefGoogle Scholar
  39. 39.
    D.C. Onwudiwe, P.A. Ajibade, ZnS, CdS and HgS nanoparticles via alkyl-phenyl dithiocarbamate complexes as single source precursors. Int. J. Mol. Sci. 12, 5538–5551 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Zhi-hao, Y. Wei, J. Jun-hui, Z. Li-de, Optical absorption red shift of capped ZnFe2O4 nanoparticle. Chin. Phys. Lett. 15(7), 535–536 (1998)CrossRefGoogle Scholar
  41. 41.
    H.R. Azimi, M. Ghoranneviss, S.M. Elahi, R. Yousefi, Enhancing photovoltaic performance of PbS/rGO nanocomposites: the role of buffer layer of ZnS/rGO nanocomposites. Ceram. Int. 43, 128–132 (2017)CrossRefGoogle Scholar
  42. 42.
    B. Ray, II-VI Compounds (Pergamon, Oxford, 1969), p. 153Google Scholar
  43. 43.
    H. Safardoust-Hojaghan, M. Shakouri-Arani, M. Salavati-Niasari, Structural and spectroscopic characterization of HgS nanoparticles prepared via simple microwave approach in presence of novel sulfuring agent. Trans. Nonferrous Met. Soc. China 26, 759–766 (2016)CrossRefGoogle Scholar
  44. 44.
    J.Z. Mbese, P.A. Ajibade, Synthesis, structural and optical properties of ZnS, CdS and HgS nanoparticles from dithiocarbamato single molecule precursors. J. Sulfur Chem. 35(4), 438–449 (2014)CrossRefGoogle Scholar
  45. 45.
    B.K. Patel, S. Rath, S.N. Sarangi, S.N. Sahu, HgS nanoparticles: structure and optical properties. Appl. Phys. A 86, 447–450 (2007)CrossRefGoogle Scholar
  46. 46.
    A. Marikani, Materials science (Dehli, PHI Learning Pvt. Ltd, 2017), p. 463Google Scholar
  47. 47.
    L.E. Brus, Electron–electron and electronhole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRefGoogle Scholar
  48. 48.
    J.E. Bernard, A. Zunger, Optical bowing in zinc chalcogenide semiconductor alloys. Phys. Rev. B 34, 5992–5995 (1986)CrossRefGoogle Scholar
  49. 49.
    S. Larach, R.E. Shrader, C.F. Stocker, Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides. Phys. Rev. 108, 587–589 (1957)CrossRefGoogle Scholar
  50. 50.
    J.U. Kim, M.H. Lee, H. Yang, Synthesis of Zn1 − xCdxS:Mn/ZnS quantum dots and their application to light-emitting diodes. Nanotechnology 19(46), 465605 (2008)CrossRefGoogle Scholar
  51. 51.
    V. Ramasamy, K. Praba, G. Murugadoss, Synthesis and study of optical properties of transition metals doped ZnS nanoparticles. Spectrochim. Acta. A 96, 963–971 (2012)CrossRefGoogle Scholar
  52. 52.
    X. Zeng, J. Zhang, F. Huang, Optical and magnetic properties of Cr-doped ZnS nanocrystallites. J. Appl. Phys. 111(12), 123525 (2012)CrossRefGoogle Scholar
  53. 53.
    Y. Chang, M. Wang, X. Chen, S. Ni, W. Qiang, Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth. Solid State Commun. 142, 295–298 (2007)CrossRefGoogle Scholar
  54. 54.
    M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N. Kamarulzaman, Synthesis, structural, and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244–252 (2014)CrossRefGoogle Scholar
  55. 55.
    W.G. Becker, A.J. Bard, Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions. J. Phys. Chem. 87, 4888–4893 (1983)CrossRefGoogle Scholar
  56. 56.
    G. Murugadoss, B. Rajamannan, V. Ramasamy, Synthesis, characterization and optical properties of water-soluble ZnS:Mn2+ nanoparticles. J. Luminescence 130, 2032–2039 (2010)CrossRefGoogle Scholar
  57. 57.
    A.A. Bol, A. Meijerink, Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+. 2. Enhancement by UV irradiation. J. Phys. Chem. B 105(42), 10203–10209 (2001)CrossRefGoogle Scholar
  58. 58.
    Y. Jiang, X.M. Meng, J. Liu, Z.Y. Xie, C.S. Lee, S.T. Lee, Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv. Mater. 15, 323–327 (2003)CrossRefGoogle Scholar
  59. 59.
    R.K. Chandrakar, R.N. Baghel, V.K. Chandra, B.P. Chandra, Synthesis, characterization and photoluminescence studies of Mn doped ZnS nanoparticles. Superlattices Microstruct. 86, 256–269 (2015)CrossRefGoogle Scholar
  60. 60.
    A.A. Bol, J. Ferwerda, J.A. Bergwerff, A. Meijerink, Luminescence of nanocrystalline ZnS:Cu2+. J. Lumin. 99, 325–334 (2002)CrossRefGoogle Scholar
  61. 61.
    D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841–2845 (1998)CrossRefGoogle Scholar
  62. 62.
    T.T.Q. Hoa, N.D. The, S. Mcvitie, N.H. Nan, L.V. Vu, T.D. Canh, N.N. Long, Optical properties of Mn- doped ZnS semiconductor nanoclusters synthesized by a hydrothermal process. Opt. Mater. 33, 308–314 (2011)CrossRefGoogle Scholar
  63. 63.
    K.M. Mullaugh, G.W.I.I.I. Luther, Spectroscopic determination of the size of cadmium sulfide nanoparticles formed under environmentally relevant conditions. J. Environ. Monit. 12, 890–897 (2010)CrossRefGoogle Scholar
  64. 64.
    N. Moloto, N. Revaprasadu, M.J. Moloto, P. O’Brien, J. Raftery, N, N’-diisopropylthiourea and N, N’-dicyclohexylthiourea zinc(II) complexes as precursors for the synthesis of ZnS nanoparticles. S. Afr. J. Sci. 105, 258–263 (2009)Google Scholar
  65. 65.
    K. Sreejith, K.S. Mali, C.G.S. Pillai, A simple one step method for the synthesis of hexagonal Cd1 -xZnxS (x = 0–0.75). Mater. Lett. 62, 95–99 (2008)CrossRefGoogle Scholar
  66. 66.
    S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Structural, optical and photoconductivity characteristics of manganese doped cadmium sulfide nanoparticles synthesized by co-precipitation method. J. Alloys Compd. 513, 118–124 (2012)CrossRefGoogle Scholar
  67. 67.
    A. Prudnikau, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev, A.V. Baranov, S.A. Cherevkov, A.V. Fedorov, Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: spectroscopic and structural examination. Mater. Sci. Eng. 177, 744–749 (2012)CrossRefGoogle Scholar
  68. 68.
    Prudnikau A, Artemyev M (2011) Optical properties of cadmium selenide nanocrystals with cadmium substitution by mercury Proc. Phys. Chem. Applications Nanostruct. Scholar
  69. 69.
    D.W. Oxtoby, H.P. Gillis, L.J. Butler, Principles of modern chemistry, 8th edn. (Cengage Learning, Boston, 2016), p. 82Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsPayame Noor University (PNU)TehranIran
  2. 2.Department of PhysicsVali-e-Asr University of RafsanjanRafsanjanIran
  3. 3.Department of ChemistryVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations