Synthesis, structure and magnetic properties of CoxFe100–x thin films thermally evaporated onto Si (111) substrate

  • A. Melloul
  • A. KharmoucheEmail author


We synthesized, using physical vapour deposition under vacuum, series of CoxFe100–x alloy thin films onto Si (111) substrate, x ranging from 38 to 65 at.%. The X-ray patterns present almost (110) and (211) textures with a grain size varying with the composition. The atomic force microscopy images show flat surfaces. The lattice constant value decreases rapidly with x. The root mean square roughness increases with x. The easy magnetic axis has been found to lie in the plane of the film. The magnetization curves present rectangular hysteresis loops inferring no in-plane anisotropy.



The authors warmly thank the Director of the URME of Sétif1 University, Prof. Mohamed HAMIDOUCHE and his team, as well as the Director of LCIMN laboratory, Prof. Amor AZIZI and his team, for alloying Mrs. Ahlem MELLOUL to carry out several experiments in their respective laboratories.


  1. 1.
    J. Zarpellon, H.F. Jurca, N. Mattoso, J.J. Klein, W.H. Schreiner, J.D. Ardisson, W.A.A. Macedo, D.H. Mosca, Morphology, structure, and magnetism of FeCo thin films electrodeposited on hydrogen-terminated Si (111) surfaces. J. Colloid Interface Sci. 316, 510–516 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Tinouche, A. Kharmouche, B. Aktas, F. Yildiz, Magnetic and structural properties of Co thin films evaporated on GaAs substrate. J. Supercond. Novel Magn. 28, 921–925 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Bourzami, N. Guebli, A. Guittoum, N. Guechi, O. Lenoble, Study of structural, electrical, magnetic and magnetooptic properties of coevaporated FexCo1−x thin films. Sens. Lett. 12, 1–5 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, D.G. Ivey, Electrodeposition of nanocrystalline CoFe soft magnetic thin films from citrate-stabilized baths. Mater. Chem. Phys. 204, 171–178 (2018)CrossRefGoogle Scholar
  5. 5.
    A.S. Kamzin, F. Wei, V.R. Ganeev, A.A. Valiullin, L.D. Zaripova, L.R. Tagirov, Influence of the film thickness and additional elements (Al, O, and N) on the properties of FeCo film structures. Phys. Solid State 56, 948–954 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Liu, L. Shi, M. Lu, S. Xu, L. Wang, H. Li, Enhanced (200) orientation in FeCo/SiO2 nanocomposite films by sol-gel spin-coating on Al underlayer. J. Supercond. Novel Magn. 29, 835–838 (2016)CrossRefGoogle Scholar
  7. 7.
    D.L. Peng, X. Wang, W. Wang, G.H. Yue, Y.Z. Chen, T. Hihara, K. Sumiyama, High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films. Sci. China Technol. Sci. 53, 1501–1506 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Cao, X. Cheng, H. Feng, C. Jin, Z. Zhu, L. Pan, Z. Wang, J. Wang, Q. Liu, Investigation on the structure and dynamic magnetic properties of FeCo films with different thicknesses by vector network analyzer and electron spin resonance spectroscopy. J. Alloys Compd. 688, 917–922 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, Y. Wang, Y. Li, X. Bi, Microstructure and magnetic anisotropy of FeCoNbB films. Chin. J. Aeronaut. 24, 823–828 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Wan, Y. Luo, L. Wu, G. Wang, The fabrication and high-efficiency electromagnetic wave absorption performance of CoFe/C core–shell structured nanocomposites. Nanoscale Res. Lett. 13, 68 (2018)CrossRefGoogle Scholar
  11. 11.
    H.-Q. Wu, P.-S. Yuan, H.-Y. Xu, D.-M. Xu, B.-Y. Geng, X.-W. Wei, Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes. J. Mater. Sci. 41, 6889–6894 (2006)CrossRefGoogle Scholar
  12. 12.
    B.Q. Geng, Y.Q. Ma, M. Wang, Z.L. Ding, W.H. Song, B.C. Zhao, Magnetic/magnetostrictive properties together with resistivity and corrosion behaviors of CoFe2 and its composite with CoFe2N. J. Mater. Sci. Technol. 33, 744–750 (2017)CrossRefGoogle Scholar
  13. 13.
    N.M. Nik Rozlin, A.M. Alfantazi, Electrochemical properties of electrodeposited nanocrystalline cobalt and cobalt-iron alloys in acidic and alkaline solutions. J. Appl. Electrochem. 43, 721–734 (2013)CrossRefGoogle Scholar
  14. 14.
    N.V.S.S. Seshagiri Rao, V. Satya Narayana Murthy, Comparative study of magnetization reversal process between elliptical and rectangular CoFe nanomagnets. Trans. Indian Inst. Met. 70, 567–572 (2017)CrossRefGoogle Scholar
  15. 15.
    G. Giannopoulos, L. Reichel, A. Markou, W. Wallisch, M. Stöger-Pollach, V. Psycharis, I. Panagiotopoulos, S. Fähler, J. Fidler, D. Niarchos, Structural and magnetic properties of strongly carbon doped Fe-Co thin films. J. Magn. Magn. Mater. 393, 479–483 (2015)CrossRefGoogle Scholar
  16. 16.
    Y. Maeda, K. Hamaya, S. Yamada, Y. Ando, K. Yamane, M. Miyao, High-quality epitaxial CoFe/Si(111) heterostructures fabricated by low-temperature molecular beam epitaxy. Appl. Phys. Lett. 97, 192501 (2010)CrossRefGoogle Scholar
  17. 17.
    Y. Maeda, S. Yamada, T. Murakami, K. Yamane, K. Hamaya, M. Miyao, High-quality ferromagnetic CoFe/Si contacts for Si spin-transistor applications. ENCON 2010—IEEE Region 10 Conference. pp. 1872–1874.
  18. 18.
    A.M.P. Sakita, R. Della Noce, E. Vallés, A.V. Benedetti, Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Appl. Surf. Sci. 434, 1153–1160 (2018)CrossRefGoogle Scholar
  19. 19.
    A.S. Andreev, D.V. Krasnikov, V.I. Zaikovskii, S.V. Cherepanova, M.A. Kazakova, O.B. Lapina, V.L. Kuznetsov, J.-B.D.E. de Lacaillerie, Internal field 59Co NMR study of cobalt-iron nanoparticles during the activation of CoFe2/CaO catalyst for carbon nanotube synthesis. J. Catal. 358, 62–70 (2018)CrossRefGoogle Scholar
  20. 20.
    P. Cai, Y. Hong, S. Ci, Z. Wen, In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn–air batteries. Nanoscale 8, 20048–20055 (2016)CrossRefGoogle Scholar
  21. 21.
    F. Bulut, W. Rosellen, M. Getzlaff, Structural properties of size-selected FeCo nanoparticles deposited on W(110). Appl. Phys. A 97, 185–189 (2009)CrossRefGoogle Scholar
  22. 22.
    I. Baker, Thayer School of Engineering, Dartmouth College, NH, USA, ICDD Grant-in-Aid, (1997). Reference code: 00-049-1567Google Scholar
  23. 23.
    P. Baylis, University of Calgaray, Alberta, Canada, ICDD Grant-in-Aid (1990). File: 00-044-1433Google Scholar
  24. 24.
    A. Kharmouche, I. Djouada, Structural studies of evaporated CoxCr1-x/Si (1 0 0) andCoxCr1-x/glass thin films. Appl. Surf. Sci. 254, 5732–5735 (2008)CrossRefGoogle Scholar
  25. 25.
    I. Bensehil, A. Kharmouche, A. Bourzami, Synthesis, structural and magnetic properties of Fe thin films. J. Supercond. Novel Magn. 30, 795–799 (2017)CrossRefGoogle Scholar
  26. 26.
    J.P. Eberhart, Analyse Structurale et Chimiques des Matériaux. Dunod (Paris), 1989Google Scholar
  27. 27.
    R.M. Bozorth, Ferromagnetism. D.VAN NOSTRAND CONPANY, INC (1951)Google Scholar
  28. 28.
    L. Néel, Magnetic surface anisotropy and superlattice formation by orientation. J. Phys. Radium 15, 225–239 (1954)CrossRefGoogle Scholar
  29. 29.
    Y.-P. Zhao, R.M. Gamache, G.-C. Wang, T.-M. Lu, G. Palasabtzas, JThM De Hosson, Effect of surface roughness on magnetic domain wall thickness, domain size, and coercivity. J. Appl. Phys. 89, 1325 (2001)CrossRefGoogle Scholar
  30. 30.
    P. Bruno, G. Bayureuther, P. Beauvillain, C. Chappert, G. Luger, D. Renard, J.P. Renard, J. Seiden, Hysteresis properties of ultrathin ferromagnetic films. J. Appl. Phys. 68, 5759 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Etudes des Surfaces et Interfaces des Matériaux Solides (L.E.S.I.M.S)Ferhat Abbas Sétif1 UniversitySétifAlgeria

Personalised recommendations