Influence of deposition techniques on quality and photodetection properties of tin disulfide (SnS2) thin films

  • Ankurkumar J. KhimaniEmail author
  • Sunil H. ChakiEmail author
  • Sanjaysinh M. Chauhan
  • M. P. Deshpande


Tin disulfide (SnS2) is one of the potential candidates for optoelectronics because of its chemical and environmental stability accompanied by favourable characteristics. Herein, the SnS2 thin films are deposited by different techniques; chemical bath deposition (CBD), dip coating (DC) and spin coating (SC). The energy dispersive analysis of x-ray confirms the stoichiometry of the films deposited by these techniques. The x-ray diffraction showed hexagonal lattice structure of thin films. The morphology is studied by transmission electron, scanning electron and optical microscopy. The selected area electron diffraction exhibited ring patterns, confirming the polycrystalline nature of the deposited thin films. The atomic force microscopy showed presence of globular grains, hills and valleys on surfaces of thin films. The absorption spectra analysis showed the thin film possess direct optical bandgap of 2.39 eV for CBD, 2.50 eV for DC and 2.75 eV for SC. Raman spectra of the as-deposited SnS2 thin films showed occurrence of A1g phonon mode at 314 cm−1. The electrical transport properties assessment depicts the n-type semiconducting nature of deposited thin films. The as-deposited thin films showed good pulsed photoresponse for white light illumination intensities of 80 mW/cm2 and 120 mW/cm2.



All the authors are thankful to the Department of Metallurgical and Materials Engineering, The M S University of Baroda, Vadodara for EDAX analysis; the Sophisticated Instrumentation Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar, Gujarat, India for UV–Vis-NIR Spectroscopy analysis; Shah-Schulman Centre for Surface Science and Nanotechnology (SSCSSN), Dharmsinh Desai University (DDU), Nadiad, Gujarat, India for XRD and AFM analysis; Indukaka Ipcowala Centre for Interdisciplinary Studies in Science and Technology (IICISST), Sardar Patel University, Vallabh Vidyanagar, Gujarat, India for I–V measurement.


  1. 1.
    L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Chem. Mater. 25, 4908 (2013)CrossRefGoogle Scholar
  2. 2.
    S.V. Bhatt, M.P. Deshpande, V. Sathe, S.H. Chaki, Solid State Commun. 201, 54 (2015)CrossRefGoogle Scholar
  3. 3.
    M.K. Agarwal, P.D. Patel, S.H. Chaki, D. Lakshminarayana, Bull. Mater. Sci. 21, 291 (1998)CrossRefGoogle Scholar
  4. 4.
    S.H. Chaki, A. Agarwal, J. Cryst. Growth 308, 176 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Chauhan, M.K. Singh, P. Kumar, S.A. Hashmi, S. Deka, Nanotechnology 28, 025401 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Parveen, S.A. Ansari, H.R. Alamri, M.O. Ansari, Z. Khan, M.H. Cho, ACS Omega 3, 1581 (2018)CrossRefGoogle Scholar
  7. 7.
    G. Hatui, G. Chandra Nayak, G. Udayabhanu, Y.K. Mishra, D.D. Pathak, New J. Chem. 41, 2702 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Liu, Z. Li, T. Hasan, X. Chen, W. Zheng, W. Feng, D. Jia, Y. Zhou, P. Hu, J. Mater. Chem. A 5, 1989 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Wang, L. Huang, Z. Wei, J. Semicond. 38, 034001 (2017)CrossRefGoogle Scholar
  10. 10.
    C. Kim, J.-C. Park, S.Y. Choi, Y. Kim, S.-Y. Seo, T.-E. Park, S.-H. Kwon, B. Cho, J.-H. Ahn, Small 1704116, 1704116 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Degrauw, R. Armstrong, A.A. Rahman, J. Ogle, L. Whittaker-Brooks, Mater. Res. Express 4, 094002 (2017)CrossRefGoogle Scholar
  12. 12.
    D. Yang, B. Li, C. Hu, H. Deng, D. Dong, X. Yang, K. Qiao, S. Yuan, H. Song, Adv. Opt. Mater. 4, 419 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Patel, X. Yu, Y.K. Kim, J. Kim, ChemNanoMat 3, 591 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Petris, P.S. Gheorghe, V.I. Vlad, E. Rusu, V.V. Ursaki, I.M. Tiginyanu, Opt. Mater. (Amst). 76, 69 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Fu, G. Gou, X. Wang, Y. Chen, Q. Wan, J. Sun, S. Xiao, H. Huang, J. Yang, G. Dai, Appl. Phys. A 123, 299 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Li, S.G. Leonardi, A. Bonavita, G. Neri, W. Wlodarski, Procedia Eng. 168, 1102 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Ma, H. Khan, W. Shan, Y. Wang, J.Z. Ou, Z. Liu, K. Kalantar-zadeh, Y. Li, Sens. Actuators B 239, 711 (2017)CrossRefGoogle Scholar
  18. 18.
    Z. Yang, Y. Ren, Y. Zhang, J. Li, H. Li, X.H.X. Hu, Q. Xu, Biosens. Bioelectron. 26, 4337 (2011)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, Y.X. Nie, B. He, L.L. Xing, X.Y. Xue, Solid State Sci. 31, 81 (2014)CrossRefGoogle Scholar
  20. 20.
    H. Choi, J. Lee, S. Shin, J. Lee, S. Lee, H. Park, S. Kwon, N. Lee, M. Bang, S.-B. Lee, H. Jeon, Nanotechnology 29, 215201 (2018)CrossRefGoogle Scholar
  21. 21.
    K.T.R. Reddy, G. Sreedevi, K. Ramya, R.W. Miles, Energy Procedia 15, 340 (2012)CrossRefGoogle Scholar
  22. 22.
    S.C. Ray, M.K. Karanjai, D. Dasgupta, Thin Solid Films 350, 72 (1999)CrossRefGoogle Scholar
  23. 23.
    H. Zhang, T. van Pelt, A.N. Mehta, H. Bender, I. Radu, M. Caymax, W. Vandervorst, A. Delabie, 2D Mater. 5, 35006 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Lee, S. Shin, G. Ham, J. Lee, H. Choi, H. Park, H. Jeon, AIP Adv. 7, 045307 (2017)CrossRefGoogle Scholar
  25. 25.
    N. Anitha, M. Anitha, J.R. Mohamed, S. Valanarasu, L. Amalraj, J. Asian Ceram. Soc. 6, 121 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Shi, Z. Chen, G. Shi, R. Sun, X. Zhan, X. Shen, Thin Solid Films 520, 4898 (2012)CrossRefGoogle Scholar
  27. 27.
    P. Huang, H. Wang, S. Brahma, S. Wang, J. Huang, J. Cryst. Growth 468, 162 (2016)CrossRefGoogle Scholar
  28. 28.
    S.H. Chaki, H.J. Joshi, J.P. Tailor, M.P. Deshpande, Mater. Res. Express 4, 076402 (2017)CrossRefGoogle Scholar
  29. 29.
    K.V. Khot, V.B. Ghanwat, C.S. Bagade, S.S. Mali, R.R. Bhosale, A.S. Bagali, T.D. Dongale, P.N. Bhosale, Mater. Lett. 180, 23 (2016)CrossRefGoogle Scholar
  30. 30.
    A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251 (2011)CrossRefGoogle Scholar
  31. 31.
    A.J. Khimani, S.H. Chaki, M.P. Deshpande, J.P. Tailor, J. Cryst. Growth 507, 180 (2018)CrossRefGoogle Scholar
  32. 32.
    A.J. Khimani, S.H. Chaki, T.J. Malek, J.P. Tailor, S.M. Chauhan, M.P. Deshpande, Mater. Res. Express 5, 036406 (2018)CrossRefGoogle Scholar
  33. 33.
    G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)CrossRefGoogle Scholar
  34. 34.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, Mater. Sci. Semicond. Process. 74, 329 (2018)CrossRefGoogle Scholar
  35. 35.
    G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)CrossRefGoogle Scholar
  36. 36.
    S.H. Chaki, M.D. Chaudhary, M.P. Deshpande, J. Semicond. 37, 053001 (2016)CrossRefGoogle Scholar
  37. 37.
    N. Anitha, M. Anitha, K. Saravanakumar, S. Valanarasu, L. Amalraj, J. Phys. Chem. Solids 119, 9 (2018)CrossRefGoogle Scholar
  38. 38.
    G.S. Thool, A.K. Singh, R.S. Singh, A. Gupta, M.A.B.H. Susan, J. Saudi Chem. Soc. 18, 712 (2014)CrossRefGoogle Scholar
  39. 39.
    V.S. John, T. Kallikulam, J. New Mater. Electrochem. Syst. 10, 9 (2007)Google Scholar
  40. 40.
    kDa. Kumar, S. Valanarasu, V. Tamilnayagam, L. Amalraj, J. Mater. Sci. 28, 14209 (2017)Google Scholar
  41. 41.
    V.M. Nikale, S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Semicond. 32, 033001 (2011)CrossRefGoogle Scholar
  42. 42.
    Y. Kumagai, L.A. Burton, A. Walsh, F. Oba, Phys. Rev. Appl. 6, 014009 (2016)CrossRefGoogle Scholar
  43. 43.
    S.H. Chaki, M.P. Deshpande, J.P. Tailor, Thin Solid Films 550, 291 (2014)CrossRefGoogle Scholar
  44. 44.
    A. Kumar, R. Bhatt, R. Katare, Micron 90, 12 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Raposo, Q. Ferreira, P.A. Ribeiro, Mod. Res. Educ. Top. Microsc. 1, 758 (2007)Google Scholar
  46. 46.
    S.M. Chauhan, S.H. Chaki, M.P. Deshpande, J.P. Tailor, A.J. Khimani, A.V. Mangrola, Nano-Struct. Nano-Objects 16, 200 (2018)CrossRefGoogle Scholar
  47. 47.
    U. Chalapathi, B. Poornaprakash, B.P. Reddy, S. Park, Thin Solid Films 640, 81 (2017)CrossRefGoogle Scholar
  48. 48.
    H.M. Pathan, J.D. Desai, C.D. Lokhande, Appl. Surf. Sci. 202, 47 (2002)CrossRefGoogle Scholar
  49. 49.
    X. Zhang, Q.-H. Tan, J.-B. Wu, W. Shi, P.-H. Tan, Nanoscale 8, 6435 (2016)CrossRefGoogle Scholar
  50. 50.
    G. Lucovsky, J.C.J. Mikkelsen, W.Y. Liang, R.M. White, R.M. Martin, Phys. Rev. B 14, 1663 (1976)CrossRefGoogle Scholar
  51. 51.
    C. Wang, Chem. Phys. Lett. 357, 371 (2002)CrossRefGoogle Scholar
  52. 52.
    K. Vijayakumar, C. Sanjeeviraja, M. Jayachandran, L. Amalraj, J. Mater. Sci. 22, 929 (2011)Google Scholar
  53. 53.
    L. Amalraj, C. Sanjeeviraja, M. Jayachandran, J. Cryst. Growth 234, 683 (2002)CrossRefGoogle Scholar
  54. 54.
    T.H. Sajeesh, A.R. Warrier, C.S. Kartha, K.P. Vijayakumar, Thin Solid Films 518, 4370 (2010)CrossRefGoogle Scholar
  55. 55.
    A.J. Khimani, S.H. Chaki, M.P. Deshpande, S.M. Chauhan, J.P. Tailor, Mater. Lett. 236, 187 (2019)CrossRefGoogle Scholar
  56. 56.
    J. Yao, Z. Zheng, G. Yang, ACS Appl. Mater. Interfaces 8(20), 12915 (2016)CrossRefGoogle Scholar
  57. 57.
    W.E. Mahmoud, Sol. Energy Mater. Sol. Cells 152, 65 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.P. G. Department of PhysicsSardar Patel UniversityVallabh VidhyanagarIndia
  2. 2.Shri A. N. Patel PG Institute of Science and ResearchAnandIndia
  3. 3.Indukaka Ipcowala Centre for Interdisciplinary Studies in Science & Technology (IICISST)Sardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations